
DarwinHealth™: Precision Therapeutics for Cancer 
Medicine is leveraging breakthrough discoveries and 
novel systems biology methodologies to implement a radi-
cally new approach for precision cancer medicine, making 
patient- and tumor-specific targeted therapy a practical 
reality for virtually every cancer patient. 

While individual health is increasingly managed on 
a predictive and preventative basis, the true promise of 
personalized, genomic medicine is yet to be fulfilled. This 
is especially true in the context of human malignancies, 
where current DNA sequencing-based approaches—wide-
ly employed across the continuum of cancer care, despite 
well known limitations—are not likely to significantly 
impact the life expectancy of most cancer 
patients. Indeed, despite a few spectacular 
successes, only a minority of patients (<25%) 
presents genetic alterations that can be 
targeted pharmacologically, and even fewer 
(<10%) are poised to derive direct clinical 
benefit from such knowledge.

As a result, radically novel approaches 
are needed to make precision cancer medi-
cine a clinically relevant and broadly appli-
cable paradigm for all cancer patients. In response to this 
interventional shortfall, DarwinHealth™ has pioneered 
and is deploying proprietary technologies to tailor target-
ed therapy to the critical tumor dependencies that exist 
in all individual patients, thus paving the road for a more 
universal application of personalized medicine.

It is now broadly accepted that cancer and other 
diseases are driven by the aberrant activity of multiple 
proteins acting in concert to dysregulate normal cellular 
function. Genetic alterations in their corresponding genes 
are only one way among many to induce such pathologic 
behavior. Indeed, paradigm-changing, systems biology 
research at Columbia University has shown that malig-
nant transformation, metastatic progression, and drug 
resistance are all driven by the abnormal activity of pivotal 

master regulator (MR) proteins that are rarely if ever di-
rectly mutated. Critically, these master regulators work in 
concert to implement highly conserved tumor checkpoints, 
whose activity is critical for cancer cell survival and can 
be exploited by targeted therapy. Not surprisingly, any 
pattern of mutations that can activate such checkpoints, 
no matter how complex, can also induce cancer initiation 
or progression. Much as in the way a vase may break in a 
million different pieces yet never in the same exact way, 
the number of mutational patterns that can spark tumor 
checkpoint activation is virtually infinite. In fact, simple 
math indicates that the number of distinct tumorigenic 
patterns far exceeds the number of cells on our planet; 
hence, the difficulty in understanding how cancer begins, 

how it subsequently evolves, and how it may 
be managed therapeutically, using only DNA 
mutation data.

As a result, much of genetics-driven 
cancer therapy currently finds itself at an 
impasse, with only a handful of statistically 
interpretable mutations (<5%) that may in-
form clinical decision-making. In contrast, 
the role of other cancer genome mutations 
remains obscure and has been compared to 

the dark matter of the universe. In summary, the discon-
nect between our ability to fully characterize and leverage 
the mutational signature of tumors into actionable therapy 
can be explained by: (a) the regulatory, mechanical, and 
functional separation between the cancer mutations we 
can detect by sequencing and the aberrant activity of the 
full complement of potentially targetable oncoproteins 
that comprise critical tumor checkpoint; and (b) the lack of 
methodologies to directly assess functional cancer drivers 
on an individual patient basis—typically, aberrantly acti-
vated proteins rather than mutated genes. Understanding 
of the former combined with availability of the latter is 
critically required to identify the most vulnerable action 
points or “treatment turnstiles” at which cancer agents 
should be aimed to be maximally effective. 
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Not surprisingly, perhaps, the daunting challenge of 
making precision medicine — and especially precision-fo-
cused cancer medicine—more “precise” has presented a 
major hurdle for advocates of genomics-based cancer ther-
apeutics that relies almost exclusively on mutation-based 
analysis at the DNA level. Indeed, genetic alterations 
alone, while providing useful information to inform 
therapeutic strategy for a minority of patients, represent 
woefully, statistically underpowered markers for extend-
ing the precision cancer medicine paradigm to all patients 
or even to a majority of them. As a result, alternative, more 
integrative approaches are needed that account for the 
complexity of cancer cell regulation when analyzing the 
wealth of information that genomics technologies have 
put at our fingertips.

DarwinHealth™ is precisely dedicated to negotiating 
the current barriers between a purely mutation-driven 
view of cancer therapeutics and its actual functional 
implementation at the protein level, using 
the regulatory logic of the cancer cell as 
an interpretative and integrative blueprint. 
Indeed, the functionally critical proteins 
that are necessary for survival of a specific 
cancer can now be systematically and accu-
rately elucidated by proprietary Darwin-
Health™ computational methods that make 
deeper probes into cellular dynamics possi-
ble. These methodologies are supported by 
a wealth of high impact publications and 
by work spanning from the basic science to preclinical 
and clinical applications at Columbia University (see our 
comprehensive bibliography). 

Leveraging IP exclusively licensed from Columbia 
University, DarwinHealth™ has developed the most inno-
vative, consistently validated, reproducible, and practical 
approach for the systematic identification of aberrantly 
activated master regulator (MR) proteins within critical tu-
mor checkpoints that drive cancer initiation, progression, 
and drug resistance (TumorCheckPoint™). This has proven 
instrumental in bridging the clinically and therapeutically 
problematic disconnect between DNA-based mutational 
analysis and the true functional implementers of cancer 
phenotypes—and, by extension, aberrant cell behaviors 
characteristic of the malignant state. Critically, rather than 
requiring costly DNA mutational profiles, this technology 
allows identification of MR proteins that have been exten-
sively validated as the gate-keepers of the “cancer cell state” 
using only mRNA abundance data from RNA sequencing 
(RNA-Seq) profiles—a methodology that easily works with 
either fresh frozen or formalin fixed paraffin embedded 
(FFPE) tumor samples harvested from individual patients.

Developing and refining the tumor checkpoint models 
responsible for driving tumorigenesis and the analytical 
technology that permits their systematic elucidation has 
been the life’s work of DarwinHealth™ Co-Founder, Pro-
fessor Andrea Califano, Dr., the Wu Professor of Chemical 
Systems Biology, Chair of the Department of Systems Bi-
ology, Director, JP Sulzberger Columbia Genome Center, 
Associate Director of the Herbert Irving Comprehensive 
Cancer Center at Columbia University. Professor Califano 
has pioneered computational algorithms based on infor-
mation theory to precisely reverse engineer the regulatory 
logic of the cancer cell, as implemented by the physical 
interaction between regulatory proteins and their targets 
and substrates, across a broad range of tumor types. This 
has allowed systematic elucidation of the precise tumor 
checkpoints and MR proteins that drive tumor initiation, 
progression, and drug resistance. These checkpoints 
and associated MR proteins have been systematically 
validated in animal studies; and more recently, in human 

clinical studies. Importantly, he has shown 
that tumor checkpoints act as functional 
bottlenecks to integrate the effect of genetic 
alterations in upstream pathways to induce 
aberrant activity of their MR proteins, thus 
activating the genetic programs necessary 
for cancer initiation and maintenance—a 
concept best characterized as the “cancer 
bottleneck hypothesis.” 

In the process, he and his team of 
co-investigators have made a whole new world of mo-
lecular-level regulatory interactions both visible and 
computationally queryable. This knowledge has not 
only supported the systematic elucidation of regulatory 
oncoprograms and master regulator (MR) proteins but 
has allowed prediction of novel tumor therapies that 
have been confirmed experimentally and are now being 
tested in the cancer clinic setting with promising results. 
Employing DarwinHealth™-based technologies, he and 
his collaborators have identified an expanding universe 
of plausible and actionable targets for cancer treatment, 
which, until recently, had remained opaque, impenetrable, 
and poorly understood.

Together with Dr. Califano, DarwinHealth™ 
co-founder, Gideon Bosker, MD and DarwinHealth™ 
Chief Scientific, Technology, and Innovation Officer, 
Mariano Alvarez, PhD, who has worked alongside Cali-
fano at Columbia for seven years, believe that evolving 
technologies based in systems biology, are now poised to 
change the world of cancer therapeutics by establishing 
a rigorous analytical framework for pharmacological 
hypothesis generation and testing. Importantly, these 
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methodologies are ideally positioned and implementa-
tion-ready to provide a new generation of therapeutic 
advances and pharmacological options that would allow 
every cancer patient to immediately benefit from targeted 
therapies. 

It is the position of DarwinHealth™ leadership that 
their proprietary computational methods and algorithms, 
which mechanistically leapfrog the previous world of sta-
tistical associations, are now ready to be systematically ap-
plied to prioritizing tumor therapeutics using inexpensive 
molecular profiles (i.e., RNA-Seq based). These approaches 
facilitate the “unveiling” of critical tumor checkpoints and 
will allow clinicians to “act upon” these pivotal targets 
that, for nearly all others using alternative technologies, 
remain largely invisible and/or indecipherable.

How does DarwinHealth™ technology accomplish 
its lofty objective of bringing precision therapeutics to 
the world of cancer medicine? What are the 
nuts-and-bolts mechanics of its analytical 
methods based on mRNA profiling? Gene 
expression profiles (GEPs) of mRNA abun-
dance (RNA-Seq) of specific tumors in specific 
patients are easily and routinely measured. 
Yet, when interrogated at the individual gene 
level, they are even less reliable than DNA 
mutations in predicting activity of drugs. 
For instance, expression of individual genes 
is poorly reproducible across distinct sam-
ples and is not indicative of the activity of their encoded 
proteins. 

DarwinHealth™ has adopted and improved key 
technology developed by the Califano lab to assess activity 
of proteins from the expression of their tumor-specific 
targets. While this requires extremely accurate maps of 
protein-target regulation, which vary from cancer to can-
cer, the resulting measurements are extremely reproduc-
ible and truly characterize the tumor relevant activity of 
these functional units. Assessment of differential protein 
activity (e.g., in tumor vs. normal tissue) has been shown 
to be critical in determining the key players that underpin 
the cancer initiation, propagation and invasion processes, 
from unregulated proliferation and immunoevasion to 
metastatic invasion. 

The ability to precisely pinpoint those master regulators 
that are primarily responsible for these “executive” break-
downs of cellular function is the arduous, proprietary level 
of analysis that DarwinHealth™ has mastered. At the sim-
plest level, it may be compared to reconstructing an image 
from the noisy bits in its holographic representation. The 

DarwinHealth™ analytical platform performs complex, 
information theory-based computational “crunching” of 
the mRNA abundance measurements using the Virtual 
Proteomics by Enriched Regulon algorithm (VIPER), 
which reconciles the measured expression values against 
a pre-validated matrix of known regulatory protein inter-
actions (an interactome). The result of these calculations is 
the accurate assessment of protein activity, all the way from 
aberrantly inactivated (e.g., tumor suppressors) to aberrant-
ly activated (e.g., oncogenes), for all regulatory proteins in 
the cell. 

Leveraging these discoveries and fine-tuning them 
to address unmet market needs, DarwinHealth™ has 
developed three novel, pillar technologies and platforms, 
DarwinOncoTarget™, DarwinOncoTreat™, and Dar-
winOncoDiscovery™, each of which provides a distinct, 
but complementary, methodology to advance precision 
therapeutics in the field of cancer medicine. The first two 

products address cancer institution and pa-
tient-centric needs for optimizing alignment 
of therapeutic agents with specific tumors (at 
all their stages of progression and invasive-
ness) in individual patients. In the case of 
DarwinOncoTarget™, we report the master 
regulator oncoproteins that represent poten-
tial druggable targets of currently approved 
or investigational agents; and, in the case 
of DarwinOncoTreat™, the full, expansive 
corral of master regulator proteins and a 

matched suite of therapeutic agents capable of reversing 
their entire abnormal signatures, either individually or in 
combination, is generated.

The third platform, DarwinOncoDiscovery™, is a fully 
integrated biodiscovery and pharmanalytics program de-
signed to ascertain, predict, and characterize proprietary 
pipelines, from lead compounds to FDA-approved drugs. 
Individual, tightly integrated components within this 
platform assess compound potential within novel ther-
apeutic areas (repurposing), aid in the design of clinical 
studies through deployment of robust biomarker to iden-
tify responders in the population (stratification), assess 
genome wide compound mechanism of action (MoA), and 
support first-principle based development of combination 
therapy (drug synergy). This is accomplished through the 
interlinked, seamless integration of computational and 
experimental methodologies, supporting full pre-clinical 
characterization of compounds and compound combina-
tions (see below).

DarwinOncoTarget™ and DarwinOncoTreat™ sup-
port, for the first time, the systematic identification of 
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druggable tumor checkpoints, on an individual patient 
basis. Furthermore, they provide a repertoire of ther-
apeutic agents assessed as the optimal tumor-specific 
inhibitors for these dependencies, including individual 
drugs and synergistic drug combinations. Critically, these 
technologies require no costly tumor DNA sequencing 
and can be applied to minimal amounts of fresh-frozen or 
FFPE tissue down to single cells harvested from individual 
cancer patients. This allows systematic matching of cancer 
patients to a growing repertoire of targeted therapeutic 
agents, even in the absence of actionable mutations and 
supports a new paradigm for drug development and 
repositioning. As shown by recent N-of-1 clinical studies 
at Columbia University, these tumor checkpoint-based 
approaches implemented by DarwinHealth™ can bring 
targeted therapy to every cancer patient.

More specifically, DarwinOncoTarget™ assesses 
whether any known targets of FDA-approved and exper-
imental inhibitors are abnormally activated 
in a specific tumor, thus establishing the 
rationale for delivering targeted therapy to 
a broad universe of patients and across the 
cancer continuum, regardless of the stage or 
degree of tumor invasiveness. Specifically, 
this analytical approach is applicable across 
the full natural history of cancer progression, 
from cancer predisposition to diagnosis, 
remission, relapse to drug resistant disease, 
metastatic progression, and/or cure in an 
individual patient. Delivery of this technology at major 
partnering cancer centers will complement and extend 
current genomic profiling approaches, quadrupling the 
number of patients that may benefit from targeted therapy, 
at a fraction of DNA profiling costs. 

In contrast, DarwinOncoTreat™ is designed to iden-
tify FDA-approved and experimental compounds that 
target the full repertoire of tumor dependencies identified 
by the DarwinCheckPoint™ methodology, either individu-
ally or in combination. We have shown that compounds 
and combinations that abrogate the full signature of MR 
protein activity in a specific cancer induce substantial 
tumor regression in vivo, leading to complete response or 
stable disease.

It is well documented that cancer patients, in partic-
ular, are increasingly taking control of their disease and 
want to be directly informed—and take advantage—of 
potential therapeutic strategies that are at the forefront of 
cancer medicine. Their search for individualized care at 
the extremes of scientific, technological, and clinical ca-
pabilities has led a growing number of patients to Cancer 

Centers of Excellence, where specialized teams and re-
search centers offer the option for enrolling in therapeutic 
trials that may be produce significant benefits where other 
standardized approaches have failed or produced subopti-
mal outcomes.

DarwinHealth™ has responded to this burgeoning 
movement by offering a service called, DarwinOncoMe™, 
which addresses directly the need to more precisely delin-
eate tumor characteristics—including their pathological, 
behavioral, and molecular sensitivity profiles.  This level 
of specificity and customization of cancer care is acutely 
relevant and takes on unique importance in patients with 
rare, rapidly progressive, or untreatable malignancies 
in which initial analysis of tumor tissues reveals the 
absence of any actionable mutations that might establish 
a presumptive roadmap for the selection of appropriate 
therapeutic options, either established or investigational. 
These challenges, and the accompanying need for person-

alized and customized strategies, address 
an identified unmet need for a broad range 
of malignancies on the cancer continuum, 
from metastatic gastroenteropancreatic 
neuroendocrine tumors (GEP-NETs) to glio-
blastoma, to most tumors with RAS pathway 
mutations, which fail to achieve long-term 
remission following routinely available ther-
apeutic strategies.

To address this critical deficiency on 
the therapeutic landscape of cancer, DarwinHealth™ 
principals have designed individualized studies for 
patients who can afford a personal—and, in some cases, 
sizable—out-of-pocket investment in the assessment and 
treatment of their malignancy. The key expectation of this 
“concierge service” for cancer management is that suc-
cessful treatment of these landmark patients will open the 
door to inexpensive, broadly available therapies for a large 
community of individuals with poorly studied or other-
wise lethal tumors. This population of cancer patients will 
be able take advantage of the discoveries made for, and 
underwritten by the landmark patients, including access 
to existing and novel therapeutic agents.

DarwinOncoMe™ is articulated around a complex, 
proven process that starts with the harvesting of patient-de-
rived tumor tissue. The tissue is subsequently prepared 
and processed to create appropriate models for testing 
candidate therapeutic options, including patient-derived 
cell (PDCL) lines, patient-derived xenografts (PDX), 
and organotypic cultures (explants). The same tissue is 
then profiled by RNA Sequencing for analysis using the 
DarwinOncoTreat™ methodology. This helps prioritize a 
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list of FDA-approved and experimental drugs that, either 
individually or in combination, are most likely to reverse 
activity of the specific tumor checkpoints identified by the 
DarwinCheckPoint™ analysis. The most promising drugs 
and drug combinations emerging from these analyses are 
then tested in PDX models to assess their ability to abro-
gate tumorigenesis in vivo. 

Of special note is the observation that the evolution 
of a tumor—especially aggressive, high-grade malig-
nancies—in an individual patient is characterized by 
unpredictable trajectories over time. This is manifested by 
variable degrees of invasiveness, drug-resistance, incon-
sistent relapse profiles, and fluctuating lengths of cancer 
remission. In actionable, precision cancer medicine terms, 
this means that therapies directed against an evolving ma-
lignancy must uniquely and precisely target those progres-
sive, sequential cellular derangements—in particular, the 
time-linked shifts in oncogenic TumorCheckPoint Signa-
tures—that are triggering dynamic changes 
in tumor behavior, resistance, invasiveness, 
and metastatic spread. Thus, cancer-directed 
intervention will need to unfold in precise, 
but flexible and nimble sequences that re-
spond dynamically to both incremental and 
significant shifts in protein-driven programs 
that perpetuate malignant behavior and 
tumor evolution in a patient.

This longitudinal, probe-and-pinpoint-
and protein pick-off capability, which has been incorpo-
rated into the DarwinOncoMet™ and DarwinOncoRe-
lapse™ treatment analysis, emphasizes just this kind of 
dynamic assessment and re-assessment of oncoproteomic 
signatures in tumor samples over time. This is the most 
reliable way to ensure that with each new shift in the suite 
of tumor drivers orchestrating malignant evolution in a 
specific host, a precise and optimal alignment between 
these newly differentiated targets and effective therapies 
can be formulated. 

It should be stressed that only the DarwinOncoTar-
get™ and DarwinOncoTreat™ methodologies offer the 
multi-temporal responsiveness to tumor evolution and 
aggressiveness, since it is rare that novel druggable mu-
tations may emerge over the lifespan of a tumor. Indeed, 
while DNA-based tumor evolution analysis frequently 
provides the rationale for therapeutic failure (e.g. emerg-
ing KRAS or p53 mutations), it only infrequently provides 
additional rationale for therapy refinement. Therefore, 
mutational analysis provides scant, if any, additional 
actionable information about how to address progressive 
changes in tumor invasiveness, the expansion of aggressive 

metastatic sub-clones, or treatment failure and clinical 
relapses due to drug resistance. The DarwinOncoMet™ 
and DarwinOncoRelapse™ treatment analysis developed 
by DarwinHealth™ will address the pressing need to pro-
vide precise assessment and treatment-optimizing clinical 
interventions for patients with advanced cancers shown 
resistant to standard therapies and protocols, as shown in 
several publications.

The DarwinOncoDiscovery™ platform, based on the 
DarwinOncoMatch™ technology that aligns compounds 
with aberrantly activated master regulators, is aimed at 
the urgent and unmet need among biopharmaceutical 
companies to identify, target, and ultimately disable the 
complex oncogenic programs driving cellular transforma-
tion and tumorigenesis using the repertoire of proprietary 
compounds at their disposal. When underwritten by 
pharmaceutical companies, deployment of proprietary 
and foundational DarwinOncoMatch™ algorithms will 

not only optimize therapeutic options for 
individual patients but will provide an un-
precedented roadmap of actionable insights 
for drug development and repositioning, 
from genome-wide elucidation of mecha-
nism of action, to toxicity profile analysis, to 
development of biomarkers for stratification 
of responder populations, to the in vivo 
validation of predicted tumor-target-therapy 
alignments.

When required, these methods also can be adapted 
to focus on the targeting profiles and anti-cancer activity 
of a single approved cancer agent. By providing a precise 
and comprehensive analysis of where, why, and in what 
tumor types a singular agent will likely be active, the 
DarwinOncoDiscovery™ platform will define a productive 
label extension trajectory and clinical development road-
map for biopharmaceutical customers seeking to expand 
indications for, and maximize monetization potential of 
their in house anti-cancer agents already marketed for 
narrow indications.

By facilitating the prioritization and repurposing 
of proprietary compound pipelines for clinical develop-
ment—either by improved characterization of tumor-spe-
cific drug mechanism(s) of action, identifying novel 
therapeutic opportunities for existing drugs, including 
molecular biomarkers for patient stratification, and/
or prioritizing sensitizer compounds to rescue tumor 
sensitivity and augment clinical responsiveness following 
patient relapse—the DarwinOncoDiscovery™ platform 
offers an accelerated, precision- and proteomic-focused 
approach for discovering new cancer therapies with 
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uncanny accuracy. It does so by predicting and validating 
the full and robust range of therapeutic opportunities that 
are possible—but which, without this discovery platform, 
would remain invisible—within the existing and near-fu-
ture armamentarium of anti-cancer therapies. 

Representing hundreds of man-years of complex 
and breakthrough research and development, as well as 
hundreds of successful scientific collaborations between 
DarwinHealth™ co-founders and top laboratories across 
the world, these in silico methodologies, combined with in 
vitro cellular perturbation studies and in vivo validation 
assays, precisely pinpoint novel master regulator pro-
teins that govern cancer cell dysregulation as a result of 
mutations in other genes and represent ideal therapeutic 
targets. Using this foundational technology, DarwinOn-
coDiscovery™ will illuminate previously undiscovered, 
even unanticipated and novel match-ups among a vast in-
ventory of FDA-approved and investigational compounds 
and specific tumor cell lines, against which these agents, 
either as monotherapy, or in synergistic combination 
regimens predicted by DarwinOncoMatch™, will deliver 
anti-cancer activity at a level of precision, personalization, 
and effectiveness not currently achievable with conven-
tional methods.

Researchers, oncologists, and leading cancer centers 
across the world have been waiting for the day when 
the “bad” macromolecules, wreaking havoc in cancer’s 
cellular black box, could be reliably and systematically 
illuminated, pinpointed, and predictably disabled. 
Myriad trajectories have spun out to achieve this elusive 
goal, but none of these paths has proven as direct and 
fertile as the one carefully hypothesized and thoroughly 
validated by DarwinHealth™ co-founders, which now 
informs the technological infrastructure of Darwin-
Health™. These statements are factually supported by 
a wealth of highly cited publications in prestigious, 
high-impact scientific and medical journals—from 
Nature, Nature Genetics, Cell, and Cancer Cell, to Nature 
Biotechnology, Genes & Development, Molecular Systems 
Biology, and Genome Research, among others—and 
by their presentation as keynote lectures to scientific 
and clinical audiences at major international meetings 
focusing on cancer research and precision medicine. 

The integrated suite of DarwinHealth™ technolo-
gies—focused on a broad base of distinct customer groups, 
among them patients, oncologists, biopharmaceutical 
companies, hospitals, national health systems, cancer 
centers—will dramatically and immediately extend the 
potential applicability, value and precision potential of our 
current therapeutic arsenal for cancer to the front lines of 
patient care. Taken together, these opportunities represent 

a unique business proposition whose methodologies are 
expected to emerge as a dominant paradigm for both health 
and disease management over the next decade and beyond.

With 1.7 million new cases of cancer, and almost 
600,000 cancer-related deaths in the U.S. estimated by the 
American Cancer Society for the year 2015 alone—and 
with more than 14 million new cases of cancer reported 
worldwide by the Cancer Research Institute in the U.K.—
the need for innovative and validated strategies to treat 
cancer has never been greater; and, this need will only 
continue to grow. DarwinHealth™ has been launched 
to address these global health needs and to respond to 
national and international mandates that envision, that 
are being aggressively supported, and increasingly, that 
will demand and require more precise patient-and-pa-
thospecific interventions to optimize patient survival and 
response rates to cancer.

Merging the technology and IP foundations de-
veloped at Columbia University with the translational, 
product formulation, partnering, and commercialization 
capabilities of DarwinHealth™ represents a singular, 
leapfrogging step forward in bringing targeted, pre-
cision-focused therapeutics to a global universe con-
sisting of millions of individuals afflicted with cancer. 

With these scientific, technological, public health and 
clinical issues in clear focus, it is the mission of Darwin-
Health™ to use novel, highly sophisticated, and exper-
imentally validated computational methodologies and 
clinical tools to translate our evolved understanding of 
cancer’s intra- and inter-cellular trelliswork to real world, 
day-to-day decision-making and therapy for patients with 
cancer. Working within the rigorous, tested framework of 
a proprietary, cancer-positioning system (CPS), Darwin-
Health™ is poised to apply the proven, essential capabil-
ities of in silico-based analysis and wisdom to optimize 
clinical outcomes in patients worldwide suffering from 
this grand-challenge disease. 

DarwinHealth™: Precision Therapeutics for Can-
cer Medicine is committed to delivering a molecularly 
precise, analytically rigorous approach to cancer treat-
ment, where other methodologies have faltered; to find 
actionable targets and precise treatments for millions of 
individual cancer patients who, at the present time, do not 
have access to the tumor-target-therapy alignments that 
DarwinHealth™ technology makes possible.

Ours is a meticulously plotted journey from disruption 
and innovation to information and precision-driven applica-
tion at the front lines of cancer care. Like so many other dis-
ciplines—among them economics, chemistry, meteorology, 
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computer science, and physics—that have applied rigorous 
quantitative methods to produce stunning products with 
enormous commercial impact and value, DarwinHealth™ 
will employ numbers, edge advances in bioscience, and 
analytics to turn the dark matter of cancer genomes into 
light, so that novel therapeutic strategies can be illuminated 
and applied with confidence and precision where it matters 
most—in the individual patient with cancer. The trajectory  
 

can be stated simply: There will be paradigms lost, paradigms 
gained and—most importantly—patients cured.

Andrea Califano, PhD
Gideon Bosker, MD

Co-Founders, DarwinHealth™: Precision Therapeutics 
for Cancer Medicine
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This document introduces the key elements of the 
DarwinOncoSphere™ ecosystem of interconnected prod-
ucts, technologies and deliverables for precision cancer 
medicine. The three product lines include:

(1)    The service line (DarwinOncoTarget™ and Darwin-
OncoTreat™) dedicated to supporting therapeutic 
decision-making by oncologists and related specialists 
within large, influential, and magnet organizations—
cancer referral centers, Cancer Centers of Excellence 
(CCoE), regional cancer centers, large healthcare 
systems, cancer research organizations, and large 
cancer clinics—dedicated to cancer prevention, 
consultation, and treatment;

(2)    A personalized “oncology concierge service” 
(DarwinOncoMe™) providing precision-based tumor 
analysis, customized cancer treatment recommendations, 
and targeted management strategies for patients with 
rare, poorly responsive, or untreatable tumors, and;

(3)    DarwinHealth™’s suite of drug-focused discovery plat-
forms (DarwinOncoDiscovery™) and pharmanalytic 
products supporting corporate clinical development for 
the biopharmaceutical and biotechnology industry; with 
a focus on identifying unique and novel therapeutic and 
commercial trajectories for established and investigational 
proprietary compounds, including their repurposing and/
or label extensions across the continuum of cancer care;

Each of these products—as well as the universe 
of unique and interlinked proprietary databases 
(DarwinOncoBase™) that support their implementation—
are based on breakthrough technologies, processes, and 
algorithms (DarwinCheckPoint™, DarwinOncoMatch™, 
and DarwinOncoSynergy™) that, in aggregate, are 
internally consistent, share common interfaces, and 
supply the foundational rafters and girders that underpin 
all DarwinHeath™ products.

Finally, we describe a suite of cancer- and precision 
medicine-focused databases (DarwinOncoBase™) that 
consolidates patient tumor data and the results of drug 
perturbation assays conducted with hundreds of cancer-
approved and investigational agents, thereby comprising 
the largest and most comprehensive tumor target/targeted 
therapy alignment database in the cancer space. 

Because data emanating from these in-house 
discovery and analytical methods represent an integral, 
continuously evolving—and living treasury—of 
cancer-focused, tumor therapy alignments across the 
malignancy continuum, DarwinOncoBase™ represents 
a long-term strategic asset that can be deployed across 
multiple product lines; and, as important, it can be 
used to enhance the precision and actionability of 
DarwinHeath™ deliverables for a broad range of 
customer segments.

DESCRIPTION of PROPRIETARY TECHNOLOGIES, 
CLINICAL APPLICATIONS, and MARKET POSITIONING

INTRODUCTION TO DARWINHEALTH™

TECHNOLOGY AND PRODUCT PORTFOLIO

Darwin    Health™
PRECISION THERAPEUTICS for CANCER MEDICINE

Darwin|OncoMe™

Darwin|OncoTarget™ Darwin|OncoTreat™

Darwin|OncoDiscovery™
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DESCRIPTION of PROPRIETARY TECHNOLOGIES, 
CLINICAL APPLICATIONS, and MARKET POSITIONING

Assessing Aberrant Activity of Established  
Oncogenes and Master Regulator Proteins

A key advance in personalized treatment of the individ-
ual patient with cancer has been the discovery that some 
oncogene mutations (e.g., EGFR amplifications in lung 
adenocarcinoma) induce dependency of the cancer cell on 
the aberrant activity of the corresponding protein. This 
paradigm, best known by the term oncogene addiction1, 
has rapidly become the foundation of modern approaches 
to precision cancer medicine and has led to development 
of such highly successful oncogene-targeting drugs as 
imatinib (BCR/ABL) and trastuzumab (HER2).

Most oncologists are thoroughly familiar with this 
paradigm and routinely rely on tumor DNA mutational 
profiles to prioritize clinical use of targeted inhibitors. 
This approach presents two significant advantages: First, 
mutational analysis has become economically feasible 
and ubiquitously available, at a cost of approximately 
$3000 to $5000 per patient; and second, interpretation 
of mutational data for established oncogene mutations is 
straightforward and highly reproducible. 

Although DNA-based mutational profiles have wedged 
open a small, but significant clinical channel for cancer 
precision medicine, a plethora of scientific and medical 
studies point to important limitations of this approach. 
Not surprisingly, questions about the widespread applica-
bility of this strategy to the front lines of cancer care—and 
the inherent limits of its precision–have started to emerge. 
First and foremost, only about 25% of adult malignancies 
present with oncogene mutations that are directly action-
able (i.e., can be targeted pharmacologically). Indeed, 
direct mutation of an oncogene is only one, out of a stag-
geringly large number of ways by which the corresponding 
oncoprotein— i.e., the functional and operational interface 
responsible for cellular dysregulation, resulting in tumor-
igenesis, progression, and drug sensitivity—may become 
aberrantly activated. 

Put another way, upon evaluation of a cancer patient, 
it may be determined that a tumor-specific DNA muta-
tion exists and that it may be therapeutically actionable. 
Unfortunately, however, this is the case only in a minority 
of patients with cancer. This is because the presence of an 

oncogenic mutation, in and of itself, is neither necessary 
nor sufficient to induce tumor initiation and progression. 

Indeed, many tumors that depend on the aberrant 
activity of a specific oncogene present with no mutations 
in the corresponding gene. The relationship, perhaps, is 
best described as partially causal and, therefore, is prob-
lematic in yielding definitive clinical action points on a 
predictable basis across a broad swath of cancer patients. 
In more quantitative and predictive terms, the resolutional 
capacity of DNA mutational analysis, as articulated by the 
oncogene addiction model, is simply not sufficient to direct 
therapeutic decision-making in up to 75% of all cancers. 
In addition, a significant fraction of patients harboring 
oncogene-activating mutations fail to respond to targeted 
inhibitors, while most of those who initially do respond 
eventually relapse with drug-resistant tumors, suggesting 
other factors and regulating checkpoints may be operative.

In stark contrast, DarwinHealth™ has developed and 
validated methodologies to directly identify and pharma-
cologically inhibit the oncoproteins that are aberrantly ac-
tivated in cancer  (i.e., over- or under-activated compared 
to normal tissue)—both individually and especially when 
working in concert as an oncogenic program—indepen-
dent of their mutational state. This provides a much more 
direct and precision therapy-focused roadmap for treating 
the vast majority of tumors. 

Critically, such an oncoprotein-directed approach to 
targeted, therapeutic intervention is highly effective both 
in the initial treatment of a tumor at the time of its presen-
tation, as well as in the therapeutic management of tumors 
undergoing metastatic progression or relapse.

It should be noted that, almost without exception, 
such behavioral manifestations signaling tumor resistance 
and aggressiveness will be accompanied by a modified 
repertoire of aberrantly activated proteins; however, these 
advanced tumors undergoing “malignant evolution” gen-
erally will lack additional targetable (DNA) mutations to 
guide progressive treatment decisions. The lack of new ac-
tionable mutated targets that accompany tumor evolution 
in vivo undermines any reliable, prescriptive approach 
that might otherwise be possible using DNA mutational 
analysis. Indeed, mutational studies may generally help us 
understand why a cancer evolved to a drug-resistant state 
but it is only infrequently that they may provide us with 
novel actionable targeted for therapeutic intervention. 

DarwinHealtH™ ProDuct line

Darwin|OncoTarget™
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DESCRIPTION of PROPRIETARY TECHNOLOGIES, 
CLINICAL APPLICATIONS, and MARKET POSITIONING

In contrast, the oncoprotein-focused methodology 
developed by DarwinHealth™ is especially sensitive to a 
cancer’s natural history, in that it allows clinicians to make 
dynamic, “analyze-and-target-and-treat” interventions 
across the entire temporal and morbidity continuum of 
tumor behavior in the human host.

To achieve its goal of making precision therapeutics 
possible in every patient and to address the limitations 
of strictly mutation-dependent cancer therapeutics, 
DarwinHealth™ is utilizing a seminal and groundbreak-
ing proprietary methodology (DarwinOncoTarget™) to 
systematically detect and assess the full repertoire of aber-
rantly active and pharmacologically actionable proteins in 
a tumor, independent of the tumor’s DNA mutational state. 
This critical advance in cancer therapeutics is achieved 
by a complex systems biology analysis of the mRNA 
profile data of either fresh frozen (FF) or formalin-fixed 
paraffin-embedded (FFPE) tumor samples, as obtained by 
RNA sequencing methodologies (RNA-Seq). This yields 
an approach that produces unprecedented reproducibility 
and accuracy in the assessment of aberrantly activated on-
coproteins. Moreover, use of RNA profiles provides major 
savings, compared to exome or genome-based sequencing 
approaches; and, importantly, requires much less tissue 
for analysis. (See Figure 1.)

In summary, mutations in an oncogene are only one of 
a virtually infinite number of ways to abnormally activate 
their associated oncoproteins, whose aberrant activity 
and direct regulatory control of the tumorigenic state, 
more often than not, depends on a confluence of factors 
independent of their direct mutational status. As a result, a 
new paradigm introduced by DarwinHealth™ for pinpoint-
ing and pharmacologically targeting aberrantly activated 
oncoproteins in virtually all cancer patients represents 
the most disruptive, innovational, and productive frontier 
on the current landscape of personalized, tumor-specific 
cancer medicine.

Technology Underpinnings of DarwinOncoTarget™

DarwinHealth™ intends to establish, improve upon, 
and deploy these disruptive, post- “oncogene addiction” 
paradigms to revolutionize precision-based therapeutics at 
the front lines of patient care. Using proprietary technolo-
gy based on the VIPER algorithm2, 3, 4, a radical extension 
of the Master Regulator Inference algorithm (MARINa), 
DarwinOncoTarget™ generates a complete report of the 
aberrant activity of established oncoproteins, including 
those for which targeted inhibitors are available, result-
ing in the identification of multiple candidate (for drug 
therapy) targets and associated FDA-approved or experi-
mental inhibitors, for virtually every cancer patient.

As shown by an extensive body of published work, 
VIPER assesses activity of targetable oncoproteins based on 
the expression of their tumor-specific transcriptional tar-
gets, which dramatically increases assessment reproducibil-
ity and sensitivity. Specifically, VIPER-based inference—a 
computational model—of protein activity dramatically 
outperforms mutational analysis, gene expression analy-
sis, and protein and phosphoprotein abundance analysis 
based on Reverse Phase Protein Arrays (RPPA) technology 
in predicting targeted inhibitor response (e.g., erlotinib for 
aberrant EGFR activity in lung adenocarcinoma cells, as 
assessed by these methods) (See Figure 2.)

DarwinOncoTarget™ analyses can also be combined 
with mutational data, if available, thereby further 
increasing prediction confidence. For instance, the 
DarwinOncoTargetReport™ that accompanies each 
tumor- and patient-specific analysis will indicate whether 
a previously unreported mutation in an established 
oncoprotein likely represents a neutral (no activity 
change), gain of function (aberrant increase in oncoprotein 
activity), or loss of function (aberrant decrease in 
oncoprotein activity) mutation, thus allowing optimal 
patient data management.

Competitive Advantages: DarwinOncoTarget™ pro-
vides additional, therapeutically actionable information on 
>6,000 proteins, including >500 established oncoproteins, 
to help oncologists design optimal therapeutic approaches 
on an individual patient basis; (See Table 1.) 

Critical readouts that introduce a level of precision 
currently unmatched by and distinct from any other meth-
odologies include:

 
(1)  Generating oncoprotein activity profiles and 

associated tumor-specific inhibitors across multiple 
tumor sites (e.g., multiple metastatic sites);

(2)  Assessing aberrant activity of proteins that may 
induce relapse or resistance to first or second 
line treatment and associated tumor-specific 
inhibitors;

(3)  Identifying candidate tumor-specific inhibitors 
of aberrantly activated master regulators de novo, 
even though these may not be known or reported 
in the literature and; 

(4)  Allowing precise and highly reproducible 
assessment of aberrant protein activity from FFPE 
samples. (See Figure 3.)
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DESCRIPTION of PROPRIETARY TECHNOLOGIES, 
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Figure 1. 

Measuring protein activity is critical for understanding 
dysregulation of cancer cells, so that master regulators, 
which are necessary and/or sufficient for tumor initiation/
progression, can be identified.

Figure 2. 

(A) Reproducibility of VIPER results compared to mRNA differential expression and Protein abundance as assessed by 
Reverse Phase Protein Array (RPPA) technology. The left graph shows the correlation between triple negative breast cancer 
samples, compared to luminal samples, based on the differential expression, protein abundance, and VIPER activity. On 
the right, we show the distribution of the top 10 most differentially expressed genes, abundant protein, and VIPER-activity 
proteins in one triple negative sample when assessed in all other samples in the TCGA cohort. It is clearly visible that the 
protein assessed to be the most aberrantly activated in one sample are conserved across all the patients in the subtype. In 
contrast, differential expression and different protein abundance are very poorly conserved. 

(B) VIPER activity (x-axis) is a much better predictor of erlotinib activity (y-axis) than mutational status of 80 lung cancer 
cell lines from the cancer cell line encyclopedia (p = 1.1×10-6 vs. p = 3×10-2). 
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DESCRIPTION of PROPRIETARY TECHNOLOGIES, 
CLINICAL APPLICATIONS, and MARKET POSITIONING

Unlike any available methodology—or, to the 
knowledge of DarwinHealth™, technology that is even 
under development—the systematic tumor-site specific 
assessment of aberrantly activated proteins, over the 
time-dependent evolutionary trajectory of a patient-spe-
cific tumor, represents a powerful new framework for 
optimizing cancer treatment based on precise alignment 
of tumor-dependencies with available targeted inhibitors.

As indicated in points (1)–(4) above, the analytical 
capabilities of DarwinOncoTarget™ will extend from the 
time a tumor is initially discovered over the course of 
its natural history, which may include recurrence, long 
periods of remission, declining responsiveness, treatment 
failure, and metastatic progression. 

For the first analysis (1) above, DarwinOncoTarget™ gen-
erates an independent report for each patient-specific tumor 
biopsy or resection. This initial, baseline report can be used 
to guide initial therapeutic choices and, equally important, it 
can be used over time to modify treatment approaches and 
fine tune the drug selection calculus according to changes in 
the tumor’s oncoprotein activity profile over time. 

For the second assessment (2) above, we identify 
treatment vulnerabilities linked to drugs associated with 
relapse and resistance. In this regard, as just one example, 
we have shown that resistance emerging from the use of 
targeted agents, including trastuzumab in HER2+ breast 
cancer and glucocorticoids in T-ALL, leads to identifica-
tion of key actionable targets that restore sensitivity via 
combination therapy5, 6. 

For the third stage of precision-driven guidance, 
(3) above, we leverage extensive proprietary databases 
generated by molecular perturbation studies that identify 
tumor-specific protein inhibitors, using the DarwinOnco-
Match™ algorithm (See Section Below, DarwinHealth™ 
Proprietary Technologies). 

Finally, the ability to perform these analyses with unaf-
fected accuracy from FFPE sections, (4) above, represents 
a dramatic improvement in the ability to identify thera-
peutic options for the majority of patients whose samples 
are not preserved as fresh frozen specimens, including 
those obtained from retrospective clinical studies.

Figure 3. 

Reproducibility of VIPER results based on 12 TCGA samples for which both FFPE and fresh frozen (FF) tissue was 
available. The yellow plot represents the distribution of the rank of the top 10 most differentially expressed proteins, as 
computed from the FF sample, in the in the corresponding FFPE sample. The cyan plot represents the distribution of 
the top 10 most differentially active proteins, as assessed by VIPER from the FF sample data, in the corresponding FFPE 
sample. This shows that, while differential expression is not reproducible, VIPER activity is highly reproducible.
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Foundation One

Reproducibility

Features and 
Properties

Genes or Proteins 
Assessed

6,000 + All 
Rearrangements

25,000
315 + 28

Arrangements
~300

Fully Captures Aberrant 
Oncogene Activity, 

Independent of  
Oncogene Mutations

YES NoNo No

Generates Site Specific 
Reports of Aberrantly 
Active Oncogenes and 

Matched Inhibitors

YES NoNo No

Assesses Proteins 
Responsible for Relapse 
and Matched Inhivitors

YES NoNo No

Assesses Candidate 
Inhibitors Even if 

Currently Unknown  
or Unknowable

YES NoNo No

Applicable to Fresh 
Frozen Biopsies

YES YesYes Yes

Applicable to 
Minimal Tissue

YES YesNo No

Applicable to FFPE YES PoorPartially No

Applicable to 
Single Cells

YES YesNo No

Cost LOW LowHigh Medium

High

Table 1: Key Di�erentiations of Competitor Technologies for DarwinOncoTarget™

High Low Medium

Differential Expression RPPA

Darwin|OncoTarget™

DARWIN
OncoTarget™

Table 1. COMPARATIVE FEATURES AMONG TESTS USED TO
IDENTIFY PRECISE THERAPEUTIC TARGETS FOR CANCER
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The DarwinOncoTarget™ Report provides clinicians 
and cancer centers with specific recommendations ad-
dressing the most actionable targets, based on the cancer 
literature and completed clinical studies; as well as a listing 
of all potentially relevant clinical studies that are open for 
enrollment and key literature references.

Targeting the Full Repertoire of Tumor Dependencies

As emphasized in the preceding sections, the 
DarwinOncoTarget™ analysis-to-treatment platform for 
the individual patient represents a dramatic step forward in 
precision cancer medicine because it can identify aberrantly 
active oncogenes independent of their mutational state. 
This extends the reach of targeted therapeutics to virtually 
all cancer patients, instead of the current ~25% of patients 
who harbor potentially actionable mutations. 

Despite the significant advance and level of precision 
that DarwinOncoTarget™ will introduce into the person-
alized medicine-focused treatment landscape for cancer, 
this approach also has limitations because it requires on-
cologists to think about therapy one oncogene—or, more 
precisely, one aberrantly active oncoprotein—at a time. 
This is suboptimal because tumorigenesis requires coor-
dinated dysregulation of multiple proteins overseeing 
key tumorigenic programs (i.e., the hallmarks of cancer7), 
ranging from programmed cell death avoidance and im-
munoevasion to increased proliferation and dysregulated 
cell adhesion. Given the multiplicity of protein-induced 
derangements that underpin the cancer process, it is not 
surprising that most patients treated with inhibitors tar-
geting a single oncogene relapse to drug-resistant tumors.

  
Although the DarwinOncoTreat™ platform for tumor 

assessment and treatment (see below for a detailed de-
scription of this product line) has clear advantages,  there 
are critical factors and entrenched usage patterns among 
clinicians that explain why DarwinOncoTarget™ is poised to 
play an important and immediate role in the marketplace; 
and, why this DarwinHealth™ product will be sustainable 
as a go-to analytical and theranostics platform for precision 
therapeutics in cancer for years to come. Specifically: (a) 
Darwin- OncoTreat™ directly extends the “actionable mu-
tation” paradigm, which focuses on a single oncogene as a 
clinical trigger for drug selection. This represents an already 
established, widespread, familiar, and well-accepted ratio-
nale for therapeutic decision-making in the cancer space 
with a wealth of existing targeted inhibitors. Thus, even 

though the technology is radically different, conceptual bar-
riers among oncologists and related specialists are likely to 
be very low for its prompt adoption, especially because Dar-
winOncoTarget™  recapitulates the results they are expected 
to see from mutational analysis; (b) given the ever increasing 
availability of targeted inhibitors, a technology that expands 
the single target actionable oncogene model from the cur-
rent 25% of patients identified based on mutational analysis 
to the 100% of patients identified by DarwinOncoTarget™ 
will be transformational and game-changing; and (c) 
DarwinOncoTreat™ requires availability of cancer specific 
perturbational databases (DarwinOncoDrugBases™). These 
are not yet available for all tumor subtypes, including rare 
tumors. As a result, while DarwinHealth™ develops these 
resources, DarwinOncoTarget™ will continue to represent 
the premier technology for the identification of druggable 
targets on an individual patient basis.  

Addressing the challenge to improve upon the actionable 
mutation paradigm for drug selection in cancer patients, 
DarwinOncoTreat™ is the first proven methodology for the 
identification of individual drugs and drug combinations 
that target the complete repertoire of regulatory proteins 
necessary for tumor survival, on a patient-by-patient basis, 
rather than just individual oncogenes. In support of this 
cancer treatment strategy breakthrough, DarwinHealth™ 
co-founders have shown that master regulator (MR) 
proteins necessary for tumor survival are organized in 
tightly coupled modules (tumor checkpoints), whose 
aberrant activity is strictly required for tumor cell survival. 
These tumor checkpoints are much more conserved across 
patients with similar cancer subtypes—and even across 
distinct cancer types—than the specific mutations that 
induce tumorigenesis. (See Figure 4).

Critically, they have also shown that MR proteins can 
be systematically inferred and validated, based on analysis 
of tumor specific regulatory networks (interactomes). This 
foundational work underpinning the DarwinHealth™ 
enterprise—and, more specifically, its proprietary portfo-
lio of technologies focused on precision therapeutics for 
cancer medicine—has been published in a series of high 
impact, disruptive contributions to the scientific, cancer, 
and medical literature addressing multiple tumor types4, 
including lymphoma8, 9, leukemia5, 10, 11, glioblastoma2, 12, 13, 
breast cancer2, 6, 14, and prostate cancer3, 15, among others. 

Of unique scientific and commercial significance is 
the following: Principals of the DarwinHealth™ science, 
technology, and innovation group have shown that genetic 
or pharmacological inhibition of some MR proteins, either 
individually (essential MRs) or in combination (synthetic 
lethal MRs), leads to predictable collapse of the entire 

Darwin|OncoTreat™Foundation One

Reproducibility

Features and 
Properties

Genes or Proteins 
Assessed

6,000 + All 
Rearrangements

25,000
315 + 28

Arrangements
~300

Fully Captures Aberrant 
Oncogene Activity, 

Independent of  
Oncogene Mutations

YES NoNo No

Generates Site Specific 
Reports of Aberrantly 
Active Oncogenes and 

Matched Inhibitors

YES NoNo No

Assesses Proteins 
Responsible for Relapse 
and Matched Inhivitors

YES NoNo No

Assesses Candidate 
Inhibitors Even if 

Currently Unknown  
or Unknowable

YES NoNo No

Applicable to Fresh 
Frozen Biopsies

YES YesYes Yes

Applicable to 
Minimal Tissue

YES YesNo No

Applicable to FFPE YES PoorPartially No

Applicable to 
Single Cells

YES YesNo No

Cost LOW LowHigh Medium

High

Table 1: Key Di�erentiations of Competitor Technologies for DarwinOncoTarget™

High Low Medium

Differential Expression RPPA

Darwin|OncoTarget™

DARWIN
OncoTarget™

Table 1. COMPARATIVE FEATURES AMONG TESTS USED TO
IDENTIFY PRECISE THERAPEUTIC TARGETS FOR CANCER
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Figure 4. 

DarwinHelath™’s Tumor Checkpoint activity (i.e., the activity of a tumor’s full Master Regulator Protein repertoire) 
represents an ideal reporter assay for identifying drugs and drug combinations capable of inducing tumor remission in vivo.

tumor-checkpoint activity and loss of tumor cell viabil-
ity both in vitro and in vivo. This is producing promising 
preliminary results in a clinical context, for instance, in 
HER2+/ER- breast cancer patients who had progressed 
to trastuzumab-resistant disease. In preliminary results, 
as predicted by the algorithm, co-inhibition of HER2 and 
JAK2, using a combination of trastuzumab and ruxolitinib, 
resulted in profound response and stable disease for both 
of the first two HER2+/ER- patients enrolled in the clinical 
trial and produced no response (also as predicted) in an 
HER2+/ER+ patient.

From both an analytical and treatment perspective, Dar-
winOncoTreat™ effectively supplants the concept of oncogene 

addiction with the more actionable and precise paradigm 
of tumor checkpoint addiction, where multiple master 
regulator (MR) proteins that comprise a tumor checkpoint 
(DarwinCheckPoint™ signature) are simultaneously iden-
tified and targeted. (See technology section for a precise 
definition of master regulators and tumor checkpoints.) 

An important corollary is that tumor checkpoint activi-
ty (i.e., the activity of a tumor’s full MR protein repertoire) 
represents an ideal reporter assay for identifying drugs 
and drug combinations capable of inducing tumor remis-
sion in vivo15, 16. This addresses one of the most critical lim-
itations of current drug screening approaches. Specifically, 
in vitro cell line viability is a very poor predictor of drug 
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activity in vivo. To overcome this challenge, DarwinOn-
coTreat™ replaces viability assays with tumor checkpoint 
activity assays, whose results are extremely well correlated 
in vitro and in vivo. Indeed, a drug’s ability to abrogate a 
target protein’s activity is almost always assessed in vitro 
and the outcome is highly predictive of in vivo activity. For 
instance, an EGFR inhibitor will inhibit the receptor both 
in cell lines and in human tumors. 

Leveraging and improving upon breakthrough algo-
rithms developed at Columbia University, DarwinHealth™ 
introduces proprietary technology to elucidate MR proteins 
in tumor checkpoints (DarwinCheckPoint™), as well as the 
individual drugs (DarwinOncoMatch™) and synergistic 
drug combinations (DarwinOncoSynergy™) that may abro-
gate their activity, thus inducing tumor regression in vivo.

Ultimately, widespread deployment and application of 
the DarwinOncoTreat™ platform depends on availability 
of large-scale, proprietary drug perturbation databases, 
representing each specific tumor subtype of interest. 
Specifically, DarwinHealth™ has already created extensive 
databases (DarwinOncoDrugBase™), representing the re-
sponse of tumor subtype specific cell lines to FDA-approved 
and experimental compound perturbations, as measured 
by genome-wide RNA Seq profiling of perturbed cells at 
multiple drug concentrations and multiple time points fol-
lowing perturbation (See Technology Section for details 
and currently available perturbational databases).

Competitive Advantages of DarwinOncoTreat™. An 
unique differentiating element of DarwinOncoTreat™ is 
that MR proteins representing either individual or syn-
ergistic tumor dependencies are identified strictly—and 
automatically—from the analysis of patient-derived tissue. 
As a result, these dependencies are not contaminated by 
the idiosyncratic biology of a cell line or a mouse model, 

such as those that may be identified by functional screens. 
Indeed, cell lines are used exclusively to characterize the 
genome-wide mechanism of action (MoA) of FDA-ap-
proved and experimental compounds, which is known to 
be predictive of their in vivo MoA. 

Similarly, the ability to match pre-screened com-
pounds to the full MR program of a specific patient’s 
tumor, within minutes of receiving the tumor RNA Seq 
data, represents a remarkable and desperately needed 
improvement in precision cancer medicine. The MR tar-
get-focused approach permits drug-mediated effects to 
disrupt, shut down, and/or undermine tumor viability 
mechanistically, across the full range of their molecular 
and operational dependencies at the oncoproteomic 
level, rather than by simply selecting a specific onco-
gene to target. Systematic, targeting of the entire suite 
of critical tumor checkpoints—the DarwinCheckPoint™ 
Signature—significantly decreases the likelihood of tumor 
relapse for several reasons, including the ability to counter 
the effect of alternative mutations before they may start 
feeding the same tumor checkpoint, leading to sub-clonal 
selection (See Figure 4). 

Much like DarwinOncoTarget™ discussed above, Dar-
winOncoTreat™ (See Table 2) provides critical, additional 
information to help oncologists tailor their therapeutic 
approach to the cancer patient, including: (a) the ability 
to predict distinct drugs and drug combinations across 
multiple tumor sites (e.g., multiple metastatic sites); and 
(b)  the ability to rescue sensitivity to first or second line 
treatment by targeting the full complement of proteins 
that induce resistance. Finally, much like DarwinOnco-
Target™, DarwinOncoTreat™ provides oncologists with 
specific recommendations with respect to drugs and drug 
combinations that may be available through open clinical 
studies, as well as any relevant literature references.

Figure 5: Results of the DarwinOncoMatch™ compound prioritization in a DarwinOncoTreat™ report. Each Box represents the full repertoire 
of VIPER analyzed proteins, from the one that is mostly inactivated by the drug (on the left) to the one that is most activated by the drug (on 
the right). Red and blue bars identify proteins that were identified as aberrantly activated and inactivated in a tumor checkpoint of a specific 
neuroendocrine tumor subtype, respectively. This shows that some drugs are able to implement a complete inversion of tumor checkpoint 
activity. For instance, the compound entinostat and GSK1210151 dramatically reduced activity of activated master regulator proteins 
and increased activity of inactivated ones, thus inducing tumor checkpoint collapse. This was validated in vivo, where both compounds 
induced tumor viability reduction in mouse xenografts, with entinostat producing complete tumor regression at 25 days.
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Darwin|OncoTreat™

Foundation One

Reproducibility

Tumor Relevance  
of Inferred  

Genes/Proteins

Full Set of Tumor 
Dependencies

Unclear
Activated 

Oncogenes
Unclear

Identifies Single Drugs 
and Combinations That 
Inhibit the Entire Set of 
Tumor Dependencies

YES NoNo No

Can Identify Drivers 
of Tumor Relapses

YES UnknownUnknown Unknown

Applicable to 
Minimal Tissue

YES YesNo No

Applicable to
Single Cells

YES YesNo No

Cost Low LowHigh Medium

Applicable to Fresh
Frozen Biopsies

YES YesYes Yes

Applicable to FFPE YES PoorPartially No

High

Table 1: Key Di�erentiations of Competitor Technologies for DarwinOncoTreat™

High Low Medium

Differential Expression RPPA

Table 2. COMPARATIVE FEATURES AMONG TESTS USED TO IDENTIFY PRECISE 
AND COMPREHENSIVE SET OF TUMOR DEPENDENCIES

DARWIN
OncoTreat™

Features and 
Properties
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Bringing Precision and Personalized  
Cancer Care to a Single Patient

It is well documented that cancer patients, in particular, 
are increasingly taking control of their disease and want to be 
directly informed—and take advantage—of potential thera-
peutic strategies that are at the forefront of cancer medicine. 
Their search for individualized care at the extremes of scien-
tific, technological, and clinical capabilities has led a growing 
number of patients to Cancer Centers of Excellence, where 
specialized teams and research centers offer the option for 
enrolling in therapeutic trials that may be produce significant 
benefits where other standardized approaches have failed or 
produced suboptimal outcomes. 

The need to more precisely delineate tumor characteris-
tics—including their pathological, behavioral, and molecular 
sensitivity profiles—is acutely relevant and takes on unique 
importance in rare, rapidly progressive, or untreatable malig-
nancies in which initial analysis of tumor tissues reveals the 
absence of any kind of actionable mutations that might estab-
lish a presumptive roadmap for the selection of appropriate 
therapeutic options, either established or investigational. These 
challenges, and the accompanying need for personalized and 
customized strategies, address an identified unmet need for a 
broad range of malignancies on the cancer continuum, from 
metastatic gastroenteropancreatic neuroendocrine tumors 
(GEP-NETs) to glioblastoma, to most tumors with RAS 
pathway mutations, which fail to achieve long-term remission 
following routinely available therapeutic strategies.

To address this critical deficiency in the therapeutic land-
scape of cancer, DarwinHealth™ principals have designed indi-
vidualized studies for patients who can afford a personal—and, 
in some cases, sizable—out-of-pocket investment in the assess-
ment and treatment of their malignancy. The key expectation is 
that successful treatment of these landmark patients will open 
the door to inexpensive, broadly available therapies for a large 
community of individuals with poorly studied or otherwise 
lethal tumors. These will be able take advantage of the discov-
eries made for, and underwritten by the landmark patients, 
including access to existing and novel therapeutic agents. 

DarwinOncoMe™ (See Table 3) is articulated around a 
complex, proven process that starts with the harvesting of 
patient-derived tumor tissue. The tissue is subsequently pre-
pared and processed to create appropriate models for testing 
candidate therapeutic options, including patient-derived cell 
(PDCL) lines, patient-derived xenografts (PDX), and organo-
typic cultures (explants). The same tissue is then profiled by 

RNA Sequencing for analysis using the DarwinOncoTreat™ 
methodology. This helps prioritize a list of  FDA-approved 
and investigational drugs that, either individually or in 
combination, are most likely to reverse activity of the specific 
tumor checkpoints identified by the DarwinCheckPoint™ 
analysis. 

The most promising drugs and drug combinations 
emerging from these analyses are then tested in PDX models 
to assess their ability to abrogate tumorigenesis in vivo. 
Whenever the patient tumor fails to engraft into a PDX, Dar-
winHealth™ will either attempt to match the specific patient 
checkpoint to those of existing PDX models or will use patient 
explants to test the drugs prioritized by DarwinOncoTreat™.

As discussed, this process relies on the availability 
of comprehensive drug perturbation databases 
(DarwinOncoDrugBase™) for each patient-specific tumor 
subtype. Although DarwinHealth™ is increasing the number 
of profiled malignancies—both common and rare—it is likely 
that in some cases these resources may not have yet been 
developed. In such cases, DarwinHealth™ will produce patient-
matched perturbational databases for a cost ranging from 
$50,000 to $250,000, depending on the number of cell lines 
and tested compounds. The resulting perturbational database 
becomes a universal resource that can then be used to prioritize 
drugs and drug combinations for all future DarwinOncoMe™ 
patients with the same rare or untreatable tumor subtype. As 
novel inhibitors are developed by pharmaceutical and biotech 
companies, they can be easily added to the existing databases 
for a minimum additional investment. 

Competitive Advantages. A few companies currently 
exist that provide patient-specific drug assessment using 
either patient-derived xenografts or patient-derived explants. 
However, the critical limitation of their approaches can be 
summarized as follows: 

(1)  Only a limited number of drugs (typically N < 5) can 
be tested in a mouse model or explant, due to cost and 
tissue availability; and 

(2)  DarwinHealth™’s competitors have no proven meth-
odology to prioritize drugs from the full repertoire 
of FDA-approved and experimental compounds. As 
a result, they typically start from a small, predefined 
number of agents that have been used successfully in 
related tumors. In contrast, DarwinHealth™ can pri-
oritize hundreds of drugs, and drug combinations, 
based on mechanistic delineation of tumor check-
points and, therefore, provides a dramatically more 
robust and precise assessment of tumor-target-thera-
peutic alignments than all other current technologies 
on the market.

Darwin|OncoMe™
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Champions

Patient Derived Xenograft YES Yes

Patient Derived Cell Lines YES No

Tumor Growth Assessed by MRI YES No

Drugs and Drug Combinations Prioritized  
by Checkpoint Analysis

YES No

Concierge Service YES Yes

Use of Patient Explants if PDX Cannot  
Be Established or Matched

YES No

PDX Testing of Drug Combinations YES No

Patient Matched to Existing PDX Models  
if Tumor Transplant Fails

YES No

Table 3: Key Di�erentiations of Competitor Technologies for DarwinOncoMe™

Table 3. COMPARATIVE FEATURES AMONG TESTS USED TO IDENTIFY TUMOR-
SPECIFIC TARGETS AND THERAPIES IN INDIVIDUAL PATIENTS

DARWIN
OncoMe™

Darwin|OncoMe™

Features and Properties
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Although DarwinHealth™ is introducing an entirely 
novel approach for identifying actionable therapeutic 
targets—and, in the process, corresponding treatments that 
are optimally aligned with tumor-specific vulnerabilities—
it is important to understand that its methodologies and 
conceptual approaches are not antithetic to the current 
oncogene addiction paradigm used in precision cancer 
medicine. Rather, they largely complement and extend it to 
make it applicable and relevant to every cancer patient.

Indeed, its baseline technology (DarwinOncoTarget™) 
is driven by the basic tenets that underpin genetics-based 
cancer medicine, albeit dramatically expanded to identify 
druggable targets in virtually any tumor. Moreover, when 
deployed at an even deeper analytical level and informed 
by systematic cell perturbation studies (DrawinOncoTreat™ 
and DarwinHealthDrugBase™), these technologies make 
it possible to identify and target critical tumor checkpoint 
dependencies that completely elude the established 
approaches based on tumor mutation analysis. As a result, 
they consistently yield prescriptive information that far 
exceeds the precisional capacity of all other methods currently 
available for assessing which therapeutic strategies are most 
likely to optimize clinical outcomes in cancer patients.

These improvements and advances in precision thera-
peutics are possible because DarwinHealth™ technologies 
directly, systematically, and quantitatively address a critical 
and yet highly elusive question in cancer biology: that is, 
what are the oncoproteins whose concerted aberrant ac-
tivity is responsible for maintaining the disease state of tu-
mor cells in the human host. In contrast, current precision 
medicine strategies approach this problem only indirectly, 
for instance by studying tumor cells in conditions that do 
not represent the tumor pathophysiology or by focusing 
only on the relatively small subset of oncoproteins that 
harbor activating mutations. Yet, the mere presence of an 
activating mutation in the DNA is neither necessary nor 
sufficient to induce aberrant activity of an oncoprotein and 
it is the latter (i.e., the pattern of dysregulated oncoprotein 

activities) that is ultimately responsible for inducing tumor-
igenesis and progression. Similarly, most targets identified 
from cell lines or mouse model studies have failed in follow 
up clinical studies. 

While all the technologies that comprise the 
DarwinHealth™ portfolio represent clinically actionable 
advances—and extend the potential benefits of precision 
medicine to a dramatically expanded segment of the cancer 
population—it is critically important to differentiate: (a) 
the capabilities, methodology, and prescriptive outcomes 
afforded by its two primary products, DarwinOncoTarget™ 
and DarwinOncoTreat™, and how they compare to each 
other; and, (b) how the theranostic information and 
treatment roadmaps emanating from these products, each 
in their own ways, are distinct from the oncogene addiction 
model (DNA mutations) that presently informs a significant 
fraction of clinical decision-making in cancer care. 

From a broad and defining perspective, the most critical 
difference between the current actionable mutation para-
digm and DarwinHealth™’s analytical framework, which 
identifies tumor checkpoints that represent and are manifes-
tations of critical disease dependencies, is that the Darwin-
Health™ tumor-specific analyses are performed independent 
of tumor mutational data; although, as discussed below, they 
can benefit from mutational profile data, if available. 

This mutation-independent approach addresses two crit-
ical constraints that limit the methodologies currently used 
for precision-focused cancer treatment: (a) DarwinHealth™ 
analyses are associated with a five- to ten-fold cost reduc-
tion, and; (b) DarwinHealth™ analyses afford a profound 
extension of the number of patients who can benefit from 
genetics-based cancer treatment, from the current bench-
mark of about 25% of cancer patients who harbor actionable 
mutations, to 100% of cancer patients who harbor aberrantly 
activated, druggable oncoproteins—thereby expanding the 
universe of cancer patients who can benefit from genet-
ics-based, precision medicine by almost four-fold.

Differentiating DarwinHealtH™ tecHnology anD tHeranostic 
Platforms from tHe current actionable mutation ParaDigm

Advancing and Applying Therapeutic Precision to the Real World, Front Lines of Cancer Management

What Are the Differentiating Aspects of the DarwinHealth™ Approach to Precision Therapeutics for Cancer 
Medicine? How, Why, and in Which Patients is DarwinHealth™ Technology Superior to the Established 

Oncogenic Paradigm for Cancer Treatment?
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Commonalities and Differences Between Existing and 
Novel Approaches to Tumor Analytics

How Does DarwinHealth™ Technology Improve Precision of the 
Drug Selection Equation for Cancer Therapy?

Another approach to clarifying these important dis-
tinctions—especially those demonstrating the advantages 
of the DarwinHealth™ technology over more traditional 
actionable mutation approaches—is to ask when the 
pharmacological targets and therapeutic agents identified 
by these approaches (i.e., DarwinHealth™ products versus 
traditional actionable mutation analysis) overlap, and when 
are they different; as well as whether these analyses are inde-
pendent of each another or inform each other in some way. 
To specifically address these points, it is important that we 
distinguish between the two DarwninHealth™ products, 
i.e., DarwinOncoTarget™ and DarwinOncoTreat™. 

Important Advances in and Extensions to the  
Current Standard (Actionable Mutation Analysis) of 

Genetics-Based Cancer Treatment

DarwinOncoTarget™, generates results that are most 
directly comparable to those generated by actionable 
mutation analyses, the current standard for tumor-target-
therapy alignment. Both methodologies focus on proteins 
whose aberrant activity is necessary for tumor survival 
and for which targeted inhibitors may exist in the clinical 
setting. The difference is that the actionable mutation 
model identifies these proteins based on the presence 
of activating mutations in their corresponding genes. 
In contrast, DarwinOncoTarget™ identifies actionable 
oncoproteins by directly measuring their aberrant 
activity using a gene reporter assay represented by the 
expression of their transcriptional targets.

 
These differences have important, clinically and thera-

peutically relevant consequences. Because analyses such as 
those conducted by DarwinHealth™ are based on measuring 
aberrant activity among proteins, two important advantages 
are observed: (a) the method can assess the aberrant activity 
of any regulatory protein in the cell (~6,000 in total) inde-
pendently of whether it is mutated or not; and (b), this method 
generally identifies aberrantly activated proteins for which an 
inhibitor is available in virtually 100% of tumor patients. 

Therefore, for this specific technology the answers to 
the questions raised above can be summarized as follows:

1.  In what ways and in which situations do the pharma-
cological targets identified by these approaches (i.e., 
DarwinOncoTarget™ versus actionable mutation anal-
ysis) overlap; and when are the pharmacologic targets 
identified by these analytical approaches different?

— The pharmacologic targets identified be these two 
methods will overlap when an oncoprotein is aber-
rantly activated because of one or more activating 
mutations in the corresponding oncogene. 

— The pharmacologic targets identified by these two 
methods will be different when either:

a)  An oncoprotein is aberrantly activated despite the 
fact that it does not harbor any activating mutations 
in the corresponding oncogene; or

b)  An oncoprotein is not aberrantly activated despite 
the presence of one or more activating mutations in 
the corresponding oncogene. 

2.  Are these analyses independent of each another or do 
they inform each other in some way?

— The methods and technology employed for these 
analyses are completely independent of each other. 
However, DarwinOncoTarget™ can inform the anal-
ysis addressing actionable mutations by assessing 
whether a specific mutation induces aberrant activity 
of the oncoprotein or not.

3.  Will the therapeutic agents prioritized by the Dar-
winOncoTarget™ approach be different from those 
agents dictated by the actionable mutation model?

— The therapeutic agents prioritized by these method-
ologies will be the same when: a druggable oncopro-
tein is aberrantly activated because of one or more 
activating mutations in the corresponding oncogene. 

 — The therapeutic agents prioritized by these method-
ologies will be different when:

a)  An oncoprotein is aberrantly activated despite the 
fact that it does not harbor any activating mutations 
in the corresponding oncogene, or;

b)  An oncoprotein is not aberrantly activated despite 
the presence of one or more activating mutations in 
the corresponding oncogene.

Darwin|OncoTarget™
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A New Paradigm, Methodological Approach,  
and Technology for Precision Therapeutics  

in Cancer Medicine
Novel Tumor Checkpoint-Driven Strategies for Optimizing 

Alignment of Specific Malignancies in Specific Patients with 
Corresponding Treatment Options

Vastly superior and more specific than either actionable 
mutation analysis, or DarwinOncoTarget™, the DarwinOn-
coTreat™ product uses a radically different approach to iden-
tify druggable tumor dependencies. Rather than focusing 
on aberrantly activated oncoproteins, it focuses on master 
regulator (MR) proteins, organized into small, compact 
modules (tumor checkpoints), whose overall activity is both 
necessary and sufficient for tumor survival, independent of 
the specific tumor mutation pattern. As a result, and in very 
general terms, this technology opens the door to identifying 
precise and dramatically more effective therapeutic align-
ments between drugs and patient-specific tumors that simply 
are not possible with mutation-dependent analyses. 

These MR proteins are generally downstream of canon-
ical oncoproteins (i.e., those that are recurrently mutated in 
cancer) and are themselves rarely, if ever mutated. Accord-
ingly, therapeutic agents are not prioritized based on their 
ability to inhibit the activity of a specific oncoprotein (i.e., 
a classic tumor target) but rather based on the ability of 
therapeutic agents to inhibit the activity of the entire MR 
protein signature representing a tumor checkpoint. 

Therefore, for this technology the answers to the ques-
tions raised above are as follows:

1.  In what ways and in which situations do the pharma-
cological targets identified by these approaches (i.e., 
DarwinOncoTreat™ versus actionable mutation) over-
lap and when are the pharmacologic targets different?

The pharmacologic targets will overlap only when a 
single oncoprotein harboring one or more activating mu-
tations is both necessary and sufficient to induce aberrant 
activation of all the MR proteins in the tumor checkpoint. 
This is obviously a relatively rare event. In all other 
cases, the predictions generated by actionable mutation 
analysis and DarwinOncoTreat™ will be different. 

2.  Are these analyses independent of each another or do 
they inform each other in some way? 

These analyses are completely independent of each 
other. However, DarwinOncoTreat™ may inform and 

improve upon the analysis of actionable mutations by 
assessing whether a specific mutation may be responsible 
for inducing aberrant activity of the tumor checkpoint. 
Note that this implies that the mutation is sufficient but 
not necessary to induce activity.

3.  Will the therapeutic agents prioritized by DarwinOn-
coTreat™ approaches be different from those dictated 
by the actionable mutation model?

Yes, and this is a critical point of departure: In most 
cases the therapeutic agents prioritized for a specific 
patient and tumor using DarwinOncoTreat™ technology 
will be different. This is because rather than targeting a 
specific aberrantly activated oncoprotein, drugs will be 
prioritized based on their ability to inactivate the entire 
repertoire of MR proteins in a tumor checkpoint. There 
are rare cases, when targeting an oncoprotein may be both 
necessary and sufficient to induce collapse of the entire tu-
mor checkpoint. In these rare cases the agents prioritized 
by DarwinOncoTreat™ and those prioritized by analysis of 
actionable mutations will be the same.

In general, while targeting individual, aberrantly 
activated oncoproteins can be extremely useful (e.g., 
erlotinib for EGFR mutated lung cancer or trastuzumab 
for HER2 amplified breast cancer), this approach is less 
than optimal and often leads to relapse with drug-resistant 
tumors because tumorigenesis requires the coordinated 
dysregulation of multiple proteins overseeing key tum-
origenic programs—or, put differently, the mutational 
overload that underpins the tumorigenic state finds its 
operational success (and, therefore, its vulnerabilities) 
embedded in a constellation of dysregulated proteins. 

Mutational heterogeneity across multiple sub-clones in 
the same tumor provides exactly the evolutionary recipes 
to select bypass and alternative mutations that can inde-
pendently activate the relevant tumor checkpoints, even 
when the activity of the primary mutated oncoprotein is 
targeted with a pharmacological inhibitor, thus resulting 
in tumor relapse to a drug resistant state.

Consequently, the most definitive and successful ther-
apies are those that are capable of disabling multiple MR 
proteins whose concerted aberrant activity is both nec-
essary and sufficient to maintain the tumor state of the 
cell. This is similar to a building with a few load-bearing 
columns and many that are not load-bearing. Destruction 
of a single load-bearing column or of any number of non-
load-bearing ones is unlikely to affect building stability. 
Yet, there are specific, minimal patterns of load-bearing 
columns which, if significantly disrupted, will bring down 
the entire edifice.

Darwin|OncoTreat™
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Superiority of the DarwinHealth™ Technology Platform
Extending the Universe of Cancer Patients and Improving 

Predictive Capacity for Identifying Responders

The combination of DarwinOncoTarget™ and 
DarwinOncoTreat™ analyses offered by DarwinHealth™ 
provides a unique opportunity to prioritize therapeutic 
strategies on a tumor-specific and individual patient 
basis. On one hand, DarwinOncoTarget™ extends the 
ability to target established oncogenes, using an ever-
increasing repertoire of targeted inhibitors. On the other, 
DarwinOncoTreat™ identifies compounds and compound 
combinations that target the full repertoire of proteins 
whose activity is required for tumor maintenance, 
independent of the specific mutations. (See Table 4.)

Having made this point, the following is a legitimate 
question that needs to be explicitly addressed. 

Specifically, if both the DarwinOncoTarget™ and action-
able mutation models are pegged to a “single oncogene” 
strategy for prioritizing therapeutic agents, then why 
can DarwinHealth™ claim that the DarwinOncoTarget™ 
technology is vastly superior? 

DarwinOncoTarget™ greatly improves on an ap-
proach that oncologists are already largely accustomed 
to and with which they are familiar in the current 
clinical setting when they prioritize targeted inhibitors 
for their cancer patients. Specifically, we already have a 
large repertoire of FDA-approved compounds targeting 
oncogene dependencies in a variety of tumors, among 
them, CML, lung cancer, breast cancer, and many oth-
ers. In addition, the repertoire of investigational inhibi-
tors is continually expanding in the hope that they may 
be used to treat specific malignancies on a molecular 
biomarker basis. Currently, these molecular biomarkers 
are mostly represented by the presence of activating so-
matic mutations (e.g., ESR1 amplification) or germ line 
variants (e.g., BRCA1 inactivating variants). However, 
these biomarkers provide are relevant and currently 
offer actionable treatment roadmaps in less than 25% 
of adult cancer patients. 

What about the other 75% of patients with cancer 
who may have aberrantly activated oncogenes not 
detectable by current technologies? Clearly, any techno-
logical breakthrough that will bring precision-focused 
cancer care to this vast universe of patients is desper-
ately needed. By focusing on the aberrant activity of 
these same oncoproteins, rather than just on their 
mutations, DarwinOncoTarget™ significantly improves 
and expands upon how clinicians may deploy targeted 

therapeutic strategies based on the information already 
afforded by the oncogene addiction paradigm. Specifi-
cally, it dramatically empowers both physicians and 
patients by reproducibly identifying multiple aberrant-
ly activated oncogenes, for which targeted inhibitors 
are available in the clinics, for virtually 100% of cancer 
patients. In addition, it can identify the specific changes 
in the repertoire of aberrantly activated oncogenes fol-
lowing relapse or progression, thus allowing therapy to 
be constantly adapted to target the most stage-relevant 
oncogene addiction. 

Hence, in this very important and decisive way, 
DarwinOncoTarget™ technology represents an 
extraordinary advance in front line capabilities for the 
cancer specialist, as compared to the current oncogene 
addiction paradigm, which deprives millions of patients 
with cancer, and their oncology specialists, the opportunity 
to deploy precision-focused treatments for their care. 
The oncogene addiction paradigm, as emphasized, only 
identifies one out of a very large number of ways by 
which an oncogene may become aberrantly activated, i.e., 
the presence of one or more activating mutations. Thus, 
while DarwinOncoTarget™ may in some cases prioritize 
candidate therapeutic agents—i.e., FDA-approved and 
investigational compounds targeting a single oncogene 
dependency—that are consistent and similar to those 
inferred from mutational model, it extends these 
capabilities to the full universe of patients with cancer.

While DarwinOncoTarget™ offers several, immedi-
ately applicable advantages over the current standard of 
DNA mutational analysis, its effectiveness is nevertheless 
restricted by its confinement to an analytical framework 
that is “pre-keyed” to those reasonably well-known 
proteins for which clinically tested inhibitors may be 
available, including those that were originally discovered 
as classic mutation-harboring oncogenes. 

This brings us to DarwinOncoTreat™, the next level 
of DarwinHealth™ technology (See sections below for 
detailed discussion of this product), which not only 
extends tumor-specific analysis to the full universe 
of cancer patients, but it does so with a technology 
that establishes an entirely new level of precisional, 
prescriptive alignment—between tumors, their full 
suites of oncoprotein dependencies, and available 
therapeutic agents. This technology and its implications 
for revolutionizing cancer treatment are unprecedented 
and exclusive to the DarwinHealth™ portfolio. 

How does it do this? In contrast to prior models 
based on oncogene addiction, the DarwinOncoTreat™ 
platform utilizes proprietary drug databases, generated 

26



Database Against Which Patient 
DNA/RNA is Tested

Products

1.  ~800 Cosmic +  
TCGA Oncogenes

2.  ~6,000 Regulatory 
Proteins

3.  DarwinHealth 
Proprietary Drug 
Perturbation DB

1.  ~6,000 Regulatory 
Proteins

2.  DarwinHealth 
Proprietary Drug 
Perturbation DB

1. 315 Oncogenes

2. 30 Translocations

Resolution Level for Tumor 
Dependencies

Individual Tumor 
Dependencies,  
Including Druggable 
Oncogenes and Other 
Regulatory Proteins

Full Tumor Dependency 
Signature. I.e., All 
Aberrantly Activated  
MR Proteins

Oncogenes Containing 
Somatic or Germline 
Functional Variants

Percent of Patient for Which Analysis 
Produces Actionable Results

100% 100% <25%

Quality and Characteristics of 
Drug/Dependency Alignment

2 to 3 Order of 
Magnitude Better 
P-Value Than Using 
Mutations or GEP

E.g. p = 1E-6 for EGFR

2 to 3 Order of 
Magnitude Better 
P-Value Than Using 
Mutations or GEP

E.g. p = 1E-6 for EGFR

Systematically Worst 
Than Based on  
MR Activity.

E.g. p = 1E-3 for EGFR

Key Deliverables and Oncologist 
Clinical Action Points Provided

1.  Aberrantly Activated 
Proteins

2.  Aberrantly 
Inactivated Proteins

3. Targeted Inhibitors  
    and Combinations

4. Clinical Trials

5. Literature

1.  Aberrantly Active  
MR Signature

2.  Targeted Inhibitors 
and Combinations

3. Clinical Trials

4. Literature

1. Mutated Genes

2. Targeted Inhibitors

3. Clinical Trials

4. Literature

Estimated Cost
RNA-Seq: $500

DH Report: $100

RNA-Seq: $500

DH Report: $200

DNA-Seq: $3,000

FO Report: $???

DARWIN
OncoTarget™

DARWIN
OncoTreat™

Darwin    Health™
PRECISION THERAPEUTICS for CANCER MEDICINE

Table 4. Competitive market analysis of DarwinHealtH™ preCision 
analytiCs for tumor-target-tHerapy alignment

Table 4: Competitive Market Analysis of DarwinHealth™ Precision Analytics for Tumor-Target-Therapy Alignment
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by multi-dimensional cell perturbation studies conducted 
in multiple tumor lines. These data allow the systematic 
identification of drugs and drug combinations that can 
target the activity of the full repertoire of MR proteins in 
a tumor-specific checkpoint, whose activity is critical for 
tumor cell survival in vivo. 

As a result DarwinOncoTreat™ provides treatment 
recommendations that are entirely independent and 
significantly more effective than those targeting only 
individual oncogenes. Indeed, it would generally be a rare 
event when the drugs prioritized by DarwinOncoTreat™ 
would overlap with those identified by single onco-
gene-mutation analysis. In general, DarwinOncoTreat™ 
will: (a) identify therapeutic strategies that cannot be “en-
visaged or assessed” by any other methods or technology; 
and (b) identify targets and drugs that are significantly 
more predictive of and likely to effect, respectively, tumor 
response than those prioritized by other approaches.

Specific Examples, Based on Scientific Discovery, 
Demonstrating Superiority and Application of 
DarwinHealth™ Technology in Cancer Patients

 
To understand why DarwinHealth™ technology 

represents a truly disruptive advance on the landscape of 
cancer treatment, a number of critical distinctions and 
comparisons should be emphasized. 

First, drugs prioritized by DarwinHealth™ tech-
nology and by actionable mutation analysis may or 
may not overlap. This is a critical point of distinction. 
For instance, in Figure 6, we show that most lung ade-
nocarcinoma (LUAD) patients with a mutation in the 
EGFR receptor are identified by DarwinOncoTarget™ as 
aberrantly activated. Hence, DarwinOncoTarget™ and 
mutational analysis would prioritize the same drugs 
(erlotinib or some other EGFR inhibitor) for treating 
this group of patients. 

Second (and this represents a critical point of departure), 
there also are: (a) several patients with EGFR mutations but 
no aberrant activity of EGFR (we have shown that these 
tumors are highly unlikely to benefit from the inhibitor); and, 
more importantly, (b) many patients without any EGFR 
mutations that are identified by DarwinOncoTarget™ 
technology as having highly aberrant activity of the 
receptor. These tumors, as we have shown, have a high 
probability of responding to EGFR inhibitors (p = 10-6). 

And third, a decision to treat with a specific agent based 
only on mutational data is much less predictive (p = 10-3) 
than decisions made using DarwinHealth™ technology. In 
general, DarwinOncoTarget’s ability to predict responders 
based on aberrant activity of known oncogenes outperforms 

mutational analysis by 2 to 4 orders of magnitude in terms 
of statistical significance of the prediction.

As shown in Figure 6, limited by space to only a few on-
cogenes and tumor types, the vast majority of patients with 
functionally relevant mutation in key oncogenes have aberrant 
activity of the protein, as assessed by DarwinHealth™ analysis. 

Differences Between Activated Oncoproteins and 
Tumor Checkpoint™ Signatures

What Advantages Does Tumor Checkpoint Analysis Bring to the 
Landscape of Precision Therapeutics for Cancer Medicine?

Aberrantly activated oncoproteins, whether or not they 
may be targeted pharmacologically, do not necessarily rep-
resent a “tumor checkpoint.” (See DarwinOncoTreat™: A 
Closer Look below for discussion of Tumor CheckPoint™ 
signatures.) Rather, they generally represent upstream 
proteins that are responsible for activating the tumor 
checkpoints. The distinction is that the proteins in a tumor 
checkpoint are both necessary and sufficient to maintain 
the cell’s tumor state. In contrast, most oncogenes are 
strictly sufficient and not necessary. For instance, while 
35% of breast cancers have mutations and aberrant activity 
of the PI3K kinase, 65% of virtually identical tumors can 
maintain their status without such mutations, which is 
likely due to mutations in other bypass or alternative genes. 
These capacity—and focus—on such distinctions high-
lights the key difference between DarwinOncoTarget™ and 
DarwinOncoTreat™. 

Thus, based on DarwinOncoTarget™ analysis, EGFR 
aberrant activity would be detected and targeted. However, 
based on DarwinOncoTreat™ analysis (which relies on its 
proprietary DarwinOncoDrugBase™ database) the drug 
prioritized for that tumor would abrogate the activity of a 
number of key MR proteins downstream of EGFR. This rep-
resents the actual tumor checkpoint that needs to be targeted 
pharmacologically to induce loss of lung cancer cell viability, 
independent of EGFR mutations. We have shown that Dar-
winHealth™ technology can effectively identify MR proteins 
representing the universal tumor checkpoint, while also 
assessing aberrant activity of upstream classic oncogenes. 

We know, for example, that about 20% of lung cancer 
patients with EGFR mutations do not respond to erlotinib. 
Consistently, about 20% of patients with mutations are de-
tected as not having any aberrant activity of EGFR. And, 
about 50% of patients who have aberrant EGFR activity 
detected by DarwinOncoTarget™ technology have no 
EGFR mutation whatsoever. So the detection technology 
offered by DarwinOncoTarget™ may increase by about 
two-fold the number of patients with NSCLC who may 
benefit from the inhibitor, erlotinib. 
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This increase in coverage is automatically applied to 
account for all targetable oncogenes; and, characteristi-
cally, each patient with a tumor will present with several 
oncogenes that are aberrantly activated. This is why Dar-
winOncoTarget™ increases coverage and actionable thera-
peutic insights for patients with targetable oncogenes from 
<25% of the cancer population, as is currently detected by 
actionable mutation analysis, to 100% of cancer patients, if 
their tumors undergo analysis with DarwinOncoTarget™.

Figure 6 below summarizes these important points 
using results obtained from patients in The Cancer 
Genome Atlas repository. Patients are ranked left 
to right from the one with the lowest to the highest 
predicted activity of a specific oncoprotein in a specific 
tumor type, e.g., EGFR in glioblastoma (GBM), in the 
first graph. Patients in the green shaded area are those 
identified by DarwinOncoTarget™ as having aberrant 
activity of the oncoprotein. Those marked by a thin, 
green vertical line are those with an activating mutation 
in the oncogene. 

From a clinically actionable perspective, clearly the vast 
majority of patients with a mutation in the oncogene are 
identified as having aberrant activity of the oncoprotein 
(green shaded area). However, depending on the specific 
oncogene, there are many patients who may be harbor 
mutations and yet show no aberrant activity of the pro-
tein. This may be because the mutation is not expressed or 
because of a host of other reasons. These patients would 
be unlikely to benefit from the drug identified by the 
oncogene addiction mutational model, but currently, they 
would be likely to be receiving such an agent. Similarly, pa-
tients in the green shaded area that lack the green vertical 
bar are identified as having aberrantly high activity of the 
oncoprotein, but they have no associated mutation. These 
patients would likely benefit from the drug but, using the 
current oncogene model, they would likely not be offered 
this therapy because the oncogene model fails to identify 
them as appropriate candidates.

Figure 6.

Figure 6. 
Comparison of DarwinOncoTarget™ predictions of aberrantly 
activated oncoproteins to those based on the actionable mutation 
paradigm. Only ten tumor specific oncoproteins are shown for 
space reasons. Each horizontal stripe includes five elements: (a) the 
specific TCGA tumor cohort in which the analysis was performed, 
including glioblastoma (GBM), lung adenocarcinoma (LUAD), 
colon adenocarcinoma (COAD), bladder adenocarcinoma (BLCA),  
breast adenocarcinoma (BRCA), and renal adenocarcinoma 
(READ); (b) the oncogene name; (c) the fraction of samples in the 
cohort harboring oncogene mutations that alter the oncoprotein 
sequence; (d) graph showing the probability of samples to 
harbor the mutated oncogene (y-axis) as a function of the 
DarwinOncoTarget™ predicted oncoprotein activity (x-axis). The 
latter is sorted left to right from the lowest to the highest predicted 
activity; (e) oncoprotein activity on a sample by sample basis 
(y-axis) ranked from the lowest (left) to highest (right) predicted 
activity. Samples in the green shaded area are predicted to have 
aberrant oncoprotein activity by DarwinOncoTarget™ analysis. 
Samples marked with a vertical green bar harbor protein altering 
mutations in the corresponding oncogene. 

As shown, DarwinOncoTarget™ correctly predicts aberrant 
oncoprotein activity for the majority of mutated samples. However, 
it both identifies mutated samples with low oncoprotein activity 
that have low probability of responding to the inhibitor as well as 
non-mutated samples with highly aberrant oncoprotein activity 
that are likely to respond to the inhibitor.
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DarwinOncoTreat™: A Science-to-Strategy Framework 
for Definitive Advancement of Cancer Care Beyond  

the Mutational Analysis Model
A Closer Look at the Methods, Rationale, and Databases that 

Underpin the Disruptive, DarwinCheckpoint™ Paradigm for  
Precision-Focused Cancer Therapy

Addressing what is arguably the most urgent and 
pervasive unmet need in cancer therapeutics, DarwinOn-
coTreat™ is the first proven methodology for the identi-
fication of individual drugs and drug combinations that 
target the complete repertoire of regulatory proteins 
necessary for tumor survival on a patient-by-patient 
basis, rather than just individual oncoproteins based on 
their mutational state. 

In support of this cancer treatment breakthrough, 
DarwinHealth™ co-founders have shown that master 
regulator (MR) proteins necessary for tumor survival 
are organized in tightly coupled modules (tumor 
checkpoints), whose concerted aberrant activity is 
necessary for tumor cell survival in a variety of cancers, 
including cancers with very different genetic alteration 
patterns. Indeed, tumor checkpoints are much more 
conserved across patients with similar cancer subtypes—
and even across distinct cancer types—than the specific 
mutations that induce tumorigenesis. 

But why is it important to target multiple proteins 
in cancer? It is well known that even the most potent 
oncogene is not sufficient to induce tumorigenesis in 
isolation. For instance, many of our nevi have BRAF or 
KRAS mutations. This is because our cells contain very 
sophisticated failsafe mechanisms to prevent transfor-
mation. For instance, presence of mutated KRAS in the 
cell triggers senescence, a mechanism by which cells go 
“dormant” and eventually die. 

In a similar way, triggering oncogenesis (making 
normal cells transform into malignant cells) requires the 
concerted activity of many different proteins that, togeth-
er, modulate multiple genetic programs (also known as 
the hallmarks of cancer) necessary for cancer survival and 
proliferation. Let’s return, for a moment to our analogy 
in which multiple, load-bearing columns are required to 
stabilize a building. Much like targeting a single oncogene, 
destroying a single load-bearing column is unlikely to 
bring down the entire building, although it may damage 
part of the building. However, destruction of even a small 

number of load-bearing columns can lead to collapse of 
the entire structure, including all remaining load-bearing 
columns via a domino effect. 

In this sense, DarwinHealth™ technology has been 
developed specifically to identify drugs that are best able to 
target the entire “load-bearing” structure of the cancer cell, 
i.e., the key MR proteins that maintain a tumor checkpoint 
in its aberrantly active state. This precisional capacity 
allows successful drug prioritization to be employed at the 
level of the individual cancer patient; or, more importantly, 
across a significant fraction of cancer patients whose tu-
mors depend on the same tumor checkpoint mechanism. 

Put slightly differently, a tumor checkpoint—some-
times also called a “tumor bottleneck”—comprises the 
minimal set of MR proteins that are dysregulated by 
the tumor’s mutational load and that are necessary and 
sufficient to control the genetic programs necessary for 
tumor cell state maintenance.

Reliance on the tumor checkpoint paradigm is what 
distinguishes the DarwinOncoTreat™ methodology from 
both the actionable mutation and the DarwinOncoTarget™ 
strategies, both of which are pegged to single oncogenic 
mutations, albeit with very different application potential 
and accuracy. 

This explains why the tumor checkpoint paradigm, 
which seeks to identify a set of proteins working together 
to implement the tumor phenotype, represents a critical 
point of scientific, conceptual, and analytical departure 
from all previous strategies of therapeutic attack focused 
on anti-tumor therapy. 

By analogy, one can think of tumor checkpoints as those 
necessary and sufficient columns that ensure a skyscraper’s 
stability. At the cancer cell level, DarwinOncoTreat™ may 
identify 20 proteins in a tumor checkpoint, such that 
precise inactivation of a specific protein or protein-pair 
in the set will result in the systematic inversion of all 
checkpoint protein the activities (i.e., tumor checkpoint 
collapse) and, in turn, induce irreversible loss of tumor 
viability in vivo. 

Critically, we have shown that there are multiple indi-
vidual proteins and protein pairs that can induce tumor 
checkpoint collapse. For instance, in follicular lymphoma 
progression, we identified at least 9 protein pairs in a tu-
mor checkpoint that induce checkpoint collapse and dra-
matic loss of viability. While there likely are many other 
pharmacological targets that may not be identified by this 
approach, the unprecedented ability to systematically 

Darwin|OncoTreat™
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identify relevant targets that are much more universal 
than individual mutated oncogenes, using quantitative 
analysis of cancer regulatory models, represents an 
extraordinarily precise approach that meets an unmet 
need to develop more precise, tumor- and patient-specific 
treatments at the front lines of cancer care.

Naturally, there are multiple ways to “bring down” 
those cancer load-bearing proteins. The optimal approach, 
of course, would be to deploy drugs that directly target the 
tumor checkpoint proteins. However, if such drugs are 
not available, one can also utilize drugs that target the 
pathway just upstream of the checkpoints. For instance, 
ibrutinib is a bruton kinase (BTK) inhibitor. BTK is never 
mutated in diffuse large B-cell lymphoma. However, it is a 
critical upstream modulator of the aberrant activity of Nf-
kB, which is the key tumor checkpoint in the ABC subtype 
of the disease (Compagno et al. Nature 2009). As such, it 
is now used clinically, with great success, to treat patients 
with this type of cancer. 

It follows that the farther away from the target tumor 
checkpoint you go, the more likely it is that the cell may 
“rewire” itself into a state that blocks the effect of the drug, 
an adaptation the frequently induces resistance. It is for 
this reason that patients managed within the framework 
of DarwinHealth™ technology will have to be monitored 
over time using a dynamic, multi-temporal approach. 
This longitudinal approach to patient care will help dis-
cover new entry points to address relapse as the disease 
progresses. However, once drugs are developed that target 
tumor checkpoints directly, relapses will be much less 
likely to occur. 

 The drugs selected by DarwinHealth™ technology are 
those that can optimally reverse the activity of all, or at 
least, the majority of proteins in the bottleneck. If a drug 
hits a relevant mutation, one may see a partial reversion 
effect but this is unlikely to cause a global reversion of all 
bottleneck proteins (i.e., MR proteins). As a result, the full 
tumor checkpoint will not collapse.

Pharmacological Targeting of Oncogenes  
and Tumor Checkpoints 

To address the urgent and unmet need for more pre-
cision-oriented cancer treatment, it is highly desirable 
to have a real world, operational framework that would 
facilitate immediate and automatic identification and 
deployment of the available repertoire of FDA-approved 
drugs and investigational compounds, or their combina-
tion, for the purpose of either: (a) inactivating proteins 
identified by DarwinOncoTarget™; or (b) inactiviating 

tumor checkpoints identified by DarwinOncoTreat™. 

Obviously, having direct knowledge of a targeted 
inhibitor for a specific protein or proteins identified by 
these analyses is one possible way to make these align-
ments, especially for activated oncoproteins identified by 
DarwinOncoTarget™. For instance, if EGFR is identified 
by the analysis as an aberrantly activated oncogene, a 
plethora of clinically approved inhibitors producing such 
inhibition already have been identified. However, we have 
also demonstrated that, within specific contexts, the 
current repertoire of FDA-approved and investigational 
drugs can be repurposed to target almost any protein 
of interest by taking an unbiased, data-driven (i.e. au-
tomatic) approach to screening for compound activity. 
This methodology, unique to the DarwinHealth™ tech-
nology portfolio, permits a dramatic expansion in our 
understanding of when approved agents may be effective 
against tumors against which their anti-tumor activity 
is not yet known, and has not been well characterized.

It should be noted that the manner in which MR pro-
teins—including MR proteins in tumor checkpoints—are 
identified by DarwinHealth™ technologies, is by assessing 
the expression of their transcriptional targets. Precisely 
the same method can be used to assess whether any drug 
is available that represents a viable inhibitor of that MR 
protein in the specific cancer context in which it is aber-
rantly activated. 

Indeed, by performing RNA Seq profiling of repre-
sentative tumor cells before and after “treatment” (i.e., 
titrated exposure to) with a large number of compounds, 
we can determine whether expression of the targets of a 
MR protein has been globally inverted. I.e., whether all 
the targets that were overexpressed are now underex-
pressed and vice versa as a result of exposure to a specific 
compound. Such a finding would identify the compound 
as a specific inhibitor of the MR protein activity. Similarly, 
for tumor checkpoints identified by DarwinOncoTreat™, 
one can simply repeat this assessment across all the MR 
proteins in the tumor checkpoint to assess inversion of 
their activity, thereby identifying compounds capable of 
inducing tumor checkpoint collapse. 

To achieve this goal, DarwinHealth™ co-founders have 
developed and will continue to develop large scale drug da-
tabases representing the RNA Seq profile of FDA-approved 
and investigational compounds in a large set of tumor 
subtypes, from triple-negative breast cancer (TNBC) and 
lung cancer to mesenchymal glioblastoma and neuroendo-
crine tumors. This resource, the DarwinOncoDrugBase™, 
represents both a valuable commercial asset and it offers an 
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unique mechanism through which DarwinHealth™ can 
directly match the specific vulnerabilities of individual 
tumors to the optimal profile of either individual drugs or 
drug combinations. 

These critical alignments between specific tumors 
and agents is made possible using DarwinHealth™ 
technology, because assessment of the proteins whose 
activity is modulated by a compound (i.e., the compound 
mechanism of action) can be performed very effectively in 
cell lines. These alignments can be made very accurately 
with  DarwinHealth™  technology because, although 
the ability of a drug to kill a tumor in a patient is rarely 
recapitulated in cell lines, the mechanism of action 
(MoA) of a drug is very effectively studied in cell lines 
and its effects are well conserved in vivo. 

For instance, an inhibitor of the EGFR receptor will 
inhibit it both in cell lines and in a patient’s tumor, as-
suming that it already has acceptable pharmacokinetic 
and pharmacodynamic (PK/PD) properties in the human 
host. The acceptability of the latter (i.e. its PK/PD profile, 
as well as its toxicity profile) is a given in DarwinHealth™ 
analyses because these analyses, and corresponding drug 
recommendations, are limited to FDA-approved drugs 
and investigational compounds that are already being 
used in the cancer clinical setting. 

To eliminate the possibility that the desired 
effect on the target protein may be idiosyncratic to 
the presence of specific mutations, the database is 
generated using multiple cell lines representing great 
mutational variability. Similarly, it’s important to 
ensure that compound selection is not driven by specific 
concentrations of the drug or evidence of its effectiveness 
that is observed only at specific time points. To avoid this, 
data used to construct the DarwinOncoDrugBase™  are 
assembled using perturbations of cancer cells at multiple 
concentrations and the effects also are profiled at multiple 
time points following perturbation, using a proprietary 
methodology. This approach has produced remarkably 
reproducible results, with highly statistically significant 
correlation between drug profiles representing related 
drugs or the same drug. 

In summary, above and beyond the actionable infor-
mation provided by DarwinOncoTarget™, the ability of 
DarwinOncoTreat™ technology to match pre-screened 
compounds in the DarwinOncoDrugBase™ to the full 
MR program of a specific patient’s tumor, within min-
utes of receiving the tumor RNA Seq data, represents a 
remarkable and desperately needed improvement in 
precision cancer medicine. 

The MR target-focused approach permits rapid and 
automatic identification of cancer drugs—and delineation 
of their precise mechanisms of action—that can disrupt, 
shut down, and/or undermine tumor viability. Unlike 
any other analytical approach currently used on the 
landscape of cancer medicine, the drugs identified by 
DarwinOncoTreat™ technology are those that have 
been proven to operate  mechanistically  across the full 
range of tumor-specifc, molecular and operational 
dependencies at the oncoproteomic level, rather than 
by simply selecting a specific oncogene to target. 
Systematic targeting of the entire suite of critical tumor 
checkpoints—the DarwinCheckPoint™ Signature—
significantly decreases the likelihood of tumor relapse 
for several reasons,   including the ability to counter the 
effects of alternative mutations before they start feeding 
and reconfiguring vulnerabilities of the same tumor 
checkpoint, leading to sub-clonal selection. 

An Innovative and Disruptive Preclinical Platform for 
Drug Discovery and Compound Characterization

Based on the products discussed and described above, 
it is evident that the technology, IP, and products in the 
DarwinHealth™ portfolio represent a significant and 
unprecedented discovery platform for biopharmaceuti-
cal and biotechnology companies that are interested in 
prioritizing or repositioning their approved drugs and 
developmental compounds. 

Implementing new paradigms based on MR-driven, 
tumor checkpoint signatures, DarwinHealth™ provides 
cutting-edge research technology and expertise to decrease 
the uncertainty associated with product development in 
the biopharmaceutical and life sciences space. 

The DarwinOncoDiscovery™ represents the full gamut 
of DarwinHealth™ proprietary technologies, methodolo-
gies, and databases that are designed to address key chal-
lenges in drug development and compound repositioning.

The unique services that can be executed with the pro-
prietary DarwinOncoDiscovery™ platform include: (a) 
compound characterization in terms of assessing its full 
therapeutic potential across an extensive range of tumor 
types; (b) elucidation of compound mechanism of action 
in diverse tissues; (c) identification of biomarkers for 
stratification of responder or drug-resistant populations; 
(d) elucidation of mechanisms of resistance and associat-
ed small molecule inhibitors that will rescue sensitivity; 

Darwin|OncoDiscovery™
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(e) characterization of compound synergy with other 
FDA approved and investiagational compounds; and (e) 
characterization of potential compound toxicity.

DarwinHealth™ already maintains databases with 
characterization of activity of most FDA-approved and 
investigational compounds, from several companies. This 
leads to systematic identification of novel applications and 
therapeutic areas for compounds that currently have a 
limited application range. To establish itself—within the 
framework of its unique systems-based, data-driven ap-
proach to cellular dysregulation across a broad spectrum 
of disease states—as the leading provider of actionable 
discoveries and analytics focused on drug therapy, Dar-
winHealth™ is in the process of establishing collaborative 
agreements and contracts with several pharmaceutical 
and biotech companies to perform a thorough analysis 
of their developmental pipeline. Based on the results, 
DarwinHealth™ will provide specific information, sug-
gestions, and developmental roadmaps for compounds 
that show specific and outsized potential—and unique 
competitive advantages—for targeting key, unaddressed 
tumor checkpoints in specific tumor subtypes. 

In general, such an assessment is based on matching 
compound-specific perturbational assays to master regu-
lators that comprise subtype-specific tumor checkpoints, 
as inferred by DarwinHealth™’s proprietary meth-
odologies. Based on these preliminary “proprietary” 
discoveries and previously unrecognized tumor-target/
targeted-drug alignments, DarwinHealth™ will engage 
the company which owns the IP rights to the compound 
in a collaborative effort to generate a comprehensive, 
detailed, and clinically relevant compound character-
ization program implemented within the DarwinOn-
coDiscovery™ service line. In addition, we welcome 
requests initiated by pharmaceutical and biotechnology 
companies to perform full or partial characterization of 
their proprietary compounds, from a single compound 
of specific relevance to their full developmental pipeline. 

DarwinOncoDiscovery™ is designed to provide a 
comprehensive, 360o evaluation of the pharmacological 
properties of any compound of interest. It does so by 
employing a proprietary DarwinHealth™ combination 
of in vitro, in vivo, and in silico assays to assess the 
compound’s likely potential as a novel and highly ther-
apeutic agent for a tumor subtype-specific indication. 
This evaluation includes a complete array of validation 
assays, identification of specific molecular biomarkers to 
stratify sensitive and resistant patients, full elucidation of 
tumor context specific compound mechanisms of action, 
and elucidation of additional sensitizers compounds that 

rescue sensitivity in resistant cells or that synergize with 
the compound of interest. This is accomplished through 
a set of interdependent and coordinated sub-projects, as 
discussed below.

Validation of the Potential of a Proprietary  
Compound within a Specific Tumor Subtype

Once a proprietary compound has been identified as 
a candidate inhibitor for a subtype-specific tumor check-
point, the first step in the DarwinOncoDiscovery™ drug 
delineation platform is the broader validation of a com-
pound’s therapeutic potential across an extremely robust 
set of representative models. Specifically, this step entails 
a concerted series of proprietary perturbational assays, at 
the cellular level, covering a comprehensive repertoire of 
subtype specific cell lines and patient-derived xenograft 
models. This comprehensive approach to analysis of   a 
compound(s) ensures that the initial assessment was not 
due to cell line-specific idiosyncrasies and that it properly 
accounts for inter and intra-tumor heterogeneity. 

To achieve these goals, we first identify an appropriate 
number of well-characterized cell lines that recapitulate 
the master regulators and overall tumor checkpoint 
addiction of the tumor subtype of interest. Depending on 
tumor subtype and availability of relevant cell line models, 
this may range from 3 to 20 cell lines. Then, rather than 
assessing compound activity based on cell viability assays, 
DarwinHealth™ assesses its ability to reverse the tu-
mor-specific MR signature, based on molecular profiles 
obtained from systematic perturbational assays. 

The rationale for these analysis is that, while it is widely 
known that in vitro viability is rarely if ever predictive 
of compound activity in vivo, we have shown that MR 
activity signature reversal by a compound represents an 
excellent predictor of activity in vivo, both for individ-
ual compounds and for compound combinations19. (See 
Figure 7.)

The value of this approach is predicated on the follow-
ing experimentally validated assumptions: (a) that tumor 
checkpoints identified from analysis of primary tumors 
are highly enriched in both essential and synthetic lethal 
master regulator proteins; (b) that MR signature reversal, 
as assessed by compound perturbation analysis of cell lines 
that recapitulate the primary tumor’s MR signature, is 
highly conserved in vivo; and, (c) that complete reversal of 

Darwin|OncoValidate™
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MR activity signature induces tumor checkpoint collapse, 
resulting in loss of tumor viability in vivo. (See Figures 8 
and 9.)

Following successful confirmation of compound-me-
diated MR-signature reversal in vitro, we will assess the 
compound’s activity in an appropriate number subtype 
specific PDX models or patient-derived explants. The 
specific number of models is we will evaluate is clearly 
dependent on the number that are available for a specific 
tumor sub-type. Some tumors, such as triple negative 
breast cancer, have great availability of PDX models, 
whereas others, such as gastroenteropancreatic neuroen-
docrine tumors (GEP-NETs), have no available models. 

In general, we will attempt to validate findings in vivo 
in at least five (5) distinct PDX models but a smaller or 
larger set can be determined in agreement with the part-
nering company, depending on the specific tumor context. 
For tumors with no PDX model availability, we will use 
recent advances in organotypic culture models, based 
on treatment of freshly harvested tumor explants. Since 
our assays have a molecular endpoint, assessed by RNA 
sequencing at 6h – 24h, drug perturbation assays can be 
easily performed using appropriately sectioned explants, 
whose cells can be maintained in a viable state for time 
periods exceeding 72h. DarwinHealth™ will have broad 
availability of PDX models via strategic partnerships, 
either for pre-existing models, such as those established 
by Champions Oncology, or based on models generated 
de novo in collaboration with the mouse hospital core 
resource at Columbia University. 

Identification of Biomarkers for Patient Stratification

Clinical testing of investigational compounds is 
increasingly dependent on availability of high quality 
molecular biomarkers to identify responder populations 
as well as to identify specific patients who may relapse 
with drug resistant tumors. For the former, population 
stratification to identify candidate responders will allow 
FDA approval of successful compounds using dramat-
ically smaller cohorts, thus reducing both timelines and 
cost. For the latter, effective identification of patients at 
risk of relapse will help elucidate the specific mechanism 
of relapse and identify candidate sensitizer compounds 
to rescue drug sensitivity, as we have shown both for 

glucocorticoid resistance in T-ALL and for trastuzumab 
resistance in HER2 amplified breast cancer5, 6. 

DarwinHealth™ founders have demonstrated that mas-
ter regulator proteins not only represent optimal thera-
peutic targets but also constitute exceptional biomarkers 
that significantly exceed mutation-based biomarkers 
in terms of their predictive ability. This is because these 
genes are part of tumor checkpoints whose activity is both 
necessary and sufficient for tumor phenotype mainte-
nance. As a result, their activity is directly and causally 
associated with the specific tumor phenotype of interest. 

For instance, we have shown that the two MR proteins 
FOXM1 and CENPF are not only synergistic master regu-
lators of aggressive prostate cancer but, as a pair, represent 
optimal predictors of prostate cancer progression (See Fig-
ure 10). Indeed less than 1% of the patients that presented 
with negative immunohistostaining for both proteins 
at diagnosis died of prostate cancer, while the patients 
with co-staining for both protein represented 90% of the 
tumor mortality in a cohort of over 900 patients collected 
at Memorial Sloan Kettering and followed for more than 
20 years. Critically, neither of the two proteins in isolation 
was predictive and neither was significantly differentially 
expressed in patients with aggressive tumors8. As a result, 
they could only be identified with the advanced methodol-
ogies that are at the core of DarwinHealth™’s product line. 

In terms of characterizing and addressing drug resis-
tance, DarwinHealth™ founders identified AKT1 as the 
master regulator of glucocorticoid resistance in T-ALL 
and phospho-STAT3 as the master regulator of HER2+/
ER- resistance to trastuzumab. These findings have lead 
to clinical trial development resulting in promising 
preliminary data. In both cases, identification of the 
MR protein representing the biomarker of drug resis-
tance led to identification of re-sensitizer compounds 
that fully rescued sensitivity to the original therapy in 
vivo and, for the latter, in the clinic, i.e., MK2206 and 
ruxolitinib, respectively. 

These analyses can be easily extended to any com-
pound of interest. Additionally, given the ability of this 
methodology to perform MR analysis from FFPE blocks, 
this approach can be easily applied retroactively to patients 
enrolled in clinical trials that have been completed, thus 
leading to elucidation of sensitivity and resistance MRs, as 
well as to identification of sensitizer compounds that can 
rescue sensitivity when used in combination therapy. 

Darwin|OncoBiomarker™
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Figure 7. 
MATCHING DISEASES TO DRUGS
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Figure 8. 
VIPER PROTEOMICS ALGORITHM

Drug A does not promote reversal of tumor signature.
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Figure 9. 
VIPER PROTEOMICS ALGORITHM

Drug B promotes reversal of tumor signature, thereby making it a viable therapeutic option.
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Precise, Genome-wide Assessment of Compound 
Mechanism of Action

 
A critical issue in evaluating the suitability of a 

compound for clinical studies is the characterization of 
its mechanism of action (MoA), i.e., the full repertoire of 
proteins responsible for its pharmacological activity and 
potential toxicity. These analyses can identify critical 
effector proteins that may be harnessed to modulate 
activity of tumor checkpoints as well as of off-target 
proteins that may be critically relevant in determining 
compound’s toxicity. 

We assess compound MoA by determining: (a) the 
proteins whose activity is affected following compound 
perturbation, using the VIPER algorithm4 and; (b) the 
proteins whose molecular interactions are most significantly 
dysregulated by the compound, using the DeMAND 
algorithm17. The integrated analysis of these contributions 
provides a highly accurate and comprehensive repertoire 
of proteins whose activity is either critical in mediating or 
in modulating the pharmacological effects of a compound. 

In addition, MoA analysis can be used to performed 
molecular screening for compounds that are specifically 
suited to inhibit a desired and pharmacologically relevant 

target, including targets that are considered undruggable, 
such as transcription factors. Using PLATE-Seq, a novel 
low-cost, high-throughput technology for RNA-Seq 
profiling of cells following compound perturbation, 
DarwinHealth™ can build universal gene reporter assays 
that can report on the compound’s ability to modulate the 
activity on any protein of interest. 

Since the cost per well for this technology is ~$30, this 
compares favorably with more specialized assays that report 
on the activity of a single target and cannot be tailored to 
report on additional targets of interest a posteriori. In 
combination with the VIPER algorithm, this allows the 
unprecedented ability to screen for inhibitors of arbitrary 
targets of interest for a fraction of the cost typically associated 
with the design, miniaturization, and implementation of 
specialized high-throughput screening assays. 

The technology requires generation of RNA Seq 
profiles following compound perturbation in multiple 
tumor specific cell lines, at multiple concentrations, and at 
multiple time points. A minimum of N = 6 profiles per cell 
line is required by DeMAND (optimal N = 10) while VIPER 
can work even with individual compound perturbation 
signatures. This allows full characterization of any 
proprietary compound library of interest both in terms 
of compound MoA and in terms of their prioritization as 
agonists or antagonists of any target protein of interest.

Figure 10.

Kaplan-Meier analysis of prostate cancer pa-
tient survival based on immunohistochemistry 
of FOXM1 and CENPF MR proteins at diag-
nosis. Double negative (blue curve) had <1% 
mortality, while double positives (red curve) 
had >90% mortality. FOXM1 positives/CEN-
PF negatives were borderline significant and 
FOXM1 negative/CENPF positives were not 
statistically significant. 

Darwin|OncoMoA™
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Assessing Potential Compound Toxicity. 

Using DarwinHealth’s proprietary technology, we 
can match a compound’s MoA, as inferred by VIPER and 
DeMAND, to the MoA of compounds known to present 
significant toxicity in the liver, kidney, erythropoietic, 
nervous, and cardiac systems. This analysis will alert 
of any potential toxicity mechanisms that may require 
monitoring during follow up clinical studies. 

Today’s current methodologies for the study of 
compound toxicity largely rely on differential expression 
analysis and phenotypic effect in mouse models, which 
are often not predictive of human compound toxicity. In 
contrast, our methodologies are based on a systematic, 
comparative analysis of a compound’s mechanism(s) of 
action. This is accomplished using a full genome-wide 
repertoire of MoA proteins, thereby permitting the 
compound of interest to be compared to compounds 
known to be associated with and produce relevant 
toxicity in the human host. Critically, this analysis can 
be performed in cell lines or in vivo. In the latter case, 
by harvesting distinct tissues from a treated animal 
DarwinHealth™ can generate a comprehensive toxicity 
profile for any compound of interest across all relevant 
tissues. Even if the compound toxicity is not manifested 
by an overt phenotype, an MoA footprint comparison 
to compounds with established human toxicity will be 
recapitulated in model organisms. 

Repurposing Additional Compounds in Biopharma’s 
Developmental Repertoire as Candidate Therapeutic 

Agents in Additional Diseases. 

DarwinHealth™ will work with partner companies to 
perform systematic characterization of any proprietary 
compounds in their developmental and pre-developmental 
pipeline as candidate therapeutic agents in a full range of 
tumor subtypes. An unique advantage of our proprietary 
methodology is that it does not require the presence of 
specific mutations in cancer patients. Rather compound 
prioritization is based exclusively on the effects that 
the agent has on the aberrant activity of the master 
regulator proteins that comprise a subtype specific 
tumor checkpoint. These proteins have been shown to 
either elicit tumor-specific essentiality, when individually 

inhibited, or tumor specific synthetic lethality, when co-
inhibited in pairs.

Elucidating Synergistic Compound Activity

DarwinHealth™ will deploy its proprietary 
DarwinOncoSynergy™ technology19 to identify additional 
compounds among non-proprietary FDA-approved 
compounds as well as from the partner’s proprietary 
developmental pipeline that synergize with any proprietary 
compound of interest. Identification of such synergies will 
dramatically increase the activity of the compound(s) in 
patients with specific tumor checkpoint addictions. These 
data are already available for all compounds that were 
previously tested in our perturbational assays and that 
are represented in our proprietary DarwinOncoBase™ 
repository. These analyses can also be easily extended 
to any additional compound of interest, Compound 
synergy predictions will be followed by in vitro and in 
vivo validation assays using established methodologies for 
synergy assessment16.

Darwin|OncoTox™

Darwin|OncoExtend™

Darwin|OncoSynergy™
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Over the past decade, DarwinHealth™ founders 
have shown that cell states representing both normal 
human physiology and human disease—from cancer to 
neurodegenerative disease—are governed/determined 
by the concerted activity of a relatively small number of 
proteins, organized within tightly interconnected regu-
latory modules2, 3, 5, 8-10, 20-26. Such “master regulator” (MR) 
proteins are only infrequently affected by genetic alter-
ations. Rather, their abnormal activity (i.e., dysregulation) 
results from the cooperative effect of multiple germ line 
variants, somatic mutations, and environmental signals 
in their upstream pathways7, 15. 

These MR proteins represent the operational infra-
structure of critical disease-checkpoint-modules (i.e., dis-
ease checkpoints, for short), that are responsible for:   (a) 
integrating the effect of complex upstream genetic patterns 
(i.e., the variants and mutations that con- tribute to dis-
ease risk); and, (b) activating the specific transcriptional 
programs necessary for the maintenance of the disease cell 
state. DarwinHealth™ has implemented proprietary tech-
nology (DarwinCheckPoint™) to systematically identify 
and target disease checkpoint proteins, on an individual 
patient basis. (See Figure 11.)

There are two important consequences stemming from 
the discovery of disease checkpoints: 

First, disease checkpoints provide a much more com-
pact and manageable representation of disease states 
than genetic alterations. Indeed, there are innumerable 
combinations of genetic alterations and variants that may 
induce abnormal activity of MR proteins in a disease 
checkpoint, including any combination of genetic and 

epigenetic alterations in their upstream regulators2, in 
their cognate binding partners, and even in other molec-
ular species including mRNAs and microRNAs19. As an 
example, a recent study by DarwinHealth™ co-founders 
has shown that just two proteins (FOXM1 and CENPF) 
provide an almost ideal determinant of aggressive prostate 
cancer, capturing at least 5 distinct genetic alterations 
patterns associated with poor prognosis and far outper-
forming any genomic classifier3. 

Second, disease checkpoints represent much more 
direct and universal disease dependencies, compared 
to genes harboring genetic alterations. Indeed, MR 
proteins in disease checkpoints represent direct mech-
anistic regulators of the genetic programs necessary for 
disease implementation. As such, abnormally activated 
disease checkpoints not only represent better prognostic 
biomarkers but also more universal therapeutic targets, 
especially compared to the individual genetic alterations 
that contribute to their abnormal activity. For instance, 
since tumor checkpoints are downstream of bypass or 
alternative sub-clonal mutations that may induce drug 
resistance, their pharmacological targeting is less likely 
to induce relapse. Consistently, despite their mutational 
heterogeneity, disease cohorts only present a handful of 
distinct disease checkpoint mechanisms, thus supporting 
far simpler clinical study design. 

Methods for the systematic elucidation of MR  
proteins8, 12 have led to discovery, validation, and trans-
lation of many critical tumor checkpoints including, 
among others: (a) FOXM1 and CENPF as the checkpoint 
of aggressive prostate cancer3, 15, with direct clinical appli-
cation both in terms of prognostic biomarkers and ther-
apeutic strategies, (b) CEBPB, CEBPD, and STAT3 as the 
checkpoint for the mesenchymal subtype of glioblastoma 
(GBM)2, 12, (c) AKT1 as the checkpoint for glucocorticoid 

Darwin    Health™
PRECISION THERAPEUTICS for CANCER MEDICINE

DarwinHealtH™ ProPrietary tecHnologies

Darwin|CheckPoint™
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Figure 11. 
Master regulators and tumor checkpoints for mesenchymal glioma.
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resistance in T cell acute lymphoblastic leukemia (T-ALL)5, 
and (d) JAK2 and STAT3 as the checkpoint for trastuzum-
ab resistance in HER2+/ER- breast cancer6. 

Pharmacological targeting of the latter, using tras-
tuzumab + ruxolitinib combination therapy, has lead 
to striking response in a clinical trial for trastuzumab 
refractory patients (NCT02066532). Similarly, pharmaco-
logical targeting of tumor checkpoints discovered on an 
individual patient basis has become the foundation for a 
number of innovative N of 1 clinical studies at Columbia 
University, including a 260 patient landmark study for 
nine rare or untreatable malignancies.

Supporting the generality of this concept, disease 
checkpoints have also been discovered in neurodegen-
erative diseases, including amyotrophic lateral sclerosis 
(ALS)3, Parkinson’s (PD)4, and Alzheimer’s Disease 
(AD)2, 20, as well as in neurobehavioral syndromes, such 
as alcohol addiction22, and in control of stem cell plu-
ripotency21. Thus, while initially targeting the oncology 
space, DarwinHealth™’s technology is equally relevant to 
a variety of additional human disease states.

Systematic discovery, characterization, and pharmaco-
logical targeting of disease checkpoints, using proprietary 
algorithms, represent the unifying strategy behind every 
DarwinHealth™ product.

Key Differentiating Features of DarwinHealth™ 
Technology Platform. All established technologies to iden-
tify candidate targets in oncology analyze candidate genes 
one at the time, based on the presence of mutations, copy 
number alterations, differential methylation, or differential 
gene or protein expression in tumors. DarwinCheckPoint™ 
is the only experimentally validated technology to directly 
identify the full repertoire of proteins (See Table 5), whose 
differential activity is causally responsible for tumor surviv-
al. Multiple, high-impact publications show that targeting 
these proteins either individually or as synergistic pairs 
leads to tumor checkpoint collapse and tumor regression in 
vivo or restores normal cellular function for non-tumor-re-
lated diseases.

and

One of the most critical limitations of current 
high-throughput screening methodologies is that cell 
viability in vitro (i.e., outside of the human organism) is an 
extremely poor predictor of drug activity in a patient-rele-
vant clinical context. In contrast, the mechanism of action 
(MoA) of drugs (i.e., the full complement of proteins that 
mediate and modulate their pharmacological activity 
and represent their targets and effectors) is relatively well 
conserved in vitro and in vivo. For instance, even though a 
compound may kill tumor cells in vitro with high specifici-
ty, the probability that it will yield a therapeutically relevant 
drug for the same tumor type in patients is relatively remote 
(<<10%). Yet, if a compound is characterized as a potent in-
hibitor of a specific protein, it is very likely that its inhibitory 
activity will be preserved in a human tumor context.

Conservation of drug mechanism of action represents the 
foundation for the DarwinHealth™ approach to targeting 
MR proteins in tumor checkpoints. As shown in several 
publications, genetic or pharmacological inhibition of either 
individual essential MRs or of synthetic lethal MR pairs within 
a tumor checkpoint leads to its complete collapse and to inver-
sion of the aberrant activity of the individual MRs. That is, MR 
proteins that were aberrantly activated, such as oncogenes, will 
become inactivated while MR proteins that were aberrantly 
inactivated, such as tumor suppressors, will be activated. 

As a result, the overall activity of MR proteins that 
comprise a specific tumor-checkpoint represents an ideal 
reporter assay to identify drugs and drug combinations 
capable of inducing tumor remission in vivo15, 16.

By precisely assessing activity changes of all proteins in 
response to drug perturbations, DarwinOncoMatch™ (See 
Table 6), allows identification of compounds that optimally 
invert the activity of MR proteins in any tumor checkpoint, 
leading to tumor regression in vivo. A complementary 
technology, DarwinOncoSynergy™, allows identification of 
drug pairs that invert the activity of complementary subsets 
of tumor checkpoint MRs, thus also leading to checkpoint 
collapse when used in combination. Both technologies 
represent the only published and thoroughly experimentally 
validated methodologies of this kind15, 16, 22. 

The ability to match pre-screened compounds to pa-
tient specific MR programs, within minutes of receiving 
the tumor RNA Seq data, represents a remarkable achieve-
ment in precision cancer medicine. It allows attacking 
tumor viability mechanistically, across the full range of 
their molecular dependencies rather than by selecting a 
specific oncogene. The latter is far more likely to induce 
tumor relapse, for instance due to sub-clonal selection.Darwin|OncoSynergy™
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Table 5: Key differentiators of competitor technologies for characterizing candidate tumor dependencies

Table 5. Key Differentiators of Competitive teChnologies for 
CharaCterization of  CanDiDate tumor DepenDenCies

Darwin    Health™
PRECISION THERAPEUTICS for CANCER MEDICINE

Features and 
Applicability

DARWIN
CheckPoint™

Mutations mRNA expression RPPA

Reproducibility High High Low Medium

Captures majority of 
tumor dependencies YES

Captures synergistic 
dependencies YES

Directly captures 
aberrant oncogene 

activity
YES

Applicable to 
Minimal Tissue YES Yes

Applicable to
Single Cells YES Yes

Applicable to Fresh
Frozen Biopsies FULL Full Full Full

Applicable to FFPE FULL Partially Poor No

Independent of 
mutational analysis YES Yes Yes

Cost LOW High Low Medium
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Table 6: Advanced, “Post-Oncogene Addiction” Paradigms for Identi�cation of Candidate Tumor Targets

Table 6. ADVANCED, “POST-ONCOGENE ADDICTION” PARADIGMS FOR 
IDENTIFICATION OF CANDIDATE TUMOR TARGETS

Features and Distinguishing Characteristics
DARWIN

OncoMatch™
Mutations

Captures aberrant activities of mutated oncogenes YES Yes

Predictive of compound activity HIGH Medium

Validated in pre-clinical contexts YES Yes

Validated in a clinical context
PARTIAL/
ONGOING

Yes

Identifies responders to targeted inhibitors that lack 
mutations

YES No

Percent of applicable tumors 100% 25%

Applicable outside of oncology YES No

Cost Low High

Requires minimal tissue, down to single cells YES No

Predictive of synergistic inhibitor activity YES No

Table 2: Key differentiators of competitor technologies for 
matching therapeutic agents to individual tumors
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Key Differentiating Points. There are currently no oth-
er established approaches to systematically and accurately 
match  FDA-approved and investigational drugs to specific 
tumor dependencies, unless the compound is specifically 
designed to target the relevant oncogene. There are also no 
other validated predictive technologies to predict compound 
synergy based on tumor dependency analysis.

A Foundational Element—Scientific,  
Clinical, and Commercial—of the 

DarwinOncoUniverse™ Technology Portfolio

The methods used to execute and generate 
DarwinOncoMatch™ and DarwinOncoSynergy™ analyses 
and recommendations are critically dependent on the 
availability of large-scale, proprietary drug perturbation 
databases, representing each specific tumor subtype 
of interest (DarwinOncoDrugBase™). For each tumor 
subtype of interest, this growing database represents the 
response of subtype-specific cell lines to FDA-approved 
and experimental compound perturbations, as measured 
by genome-wide RNA Seq profiling of these cells following 
compound perturbation at multiple concentrations and 
multiple timepoints, as well as the associated drug MAP, 
as inferred by DarwinOncoDrugMoA technology.

 
The current version of the DarwinOncoDrugBase™ 

(See Table 7) includes drug response profiles for all 
subtypes of breast cancer (BRCA), the mesenchymal 
and proneural subtypes of glioblastoma (GBM), 
gastroenteropancreatic neuroendocrine tumors (GEP-
NET), meningioma (MEN), GIST sarcoma (GSARC), 
pediatric neuroblastoma (NBL), and diffuse large B 
cell lymphoma (DLBCL). Additional tumor subtypes 
perturbations will be generated over the next six 

months, including metastatic/aggressive colon ade-
nocarcinoma (COAD), lung adenocarcinoma (LUAD), 
prostate adenocarcinoma (PRAD), and pancreatic 
ductal adenocarcinoma (PDAC). 

Key Differentiating Points: DarwinOncoDrugBase™ 
represents a radical departure from previous attempts to 
build large scale compound signatures, such as the Connec-
tivity Map (CMap) and LINCS perturbational databases, 
for the following reasons:

1.  DarwinOncoDrugBase™ uses an advanced 
high-throughput, low-cost technology (PLATESeq), 
developed at Columbia University, to perform ge-
nome wide RNA Seq profiling of perturbed cells. This 
technology permits and achieves systematic coverage 
of large compound libraries across a large number of 
cell lines at multiple compound concentrations and 
time points. In contrast, the genome-wide profiling 
used by the CMap is too expensive to allow assembly 
of such databases and the reduced-coverage technol-
ogy adopted by LINCS does not provide sufficiently 
descriptive signatures.

2.  Rather than using fixed, isomolar compound 
concentrations, as done in CMap and LINCS, 
DarwinOncoDrugBase™ starts from systematic 
dose-response curves to precisely assess the high-
est tolerated sub-lethal compound concentrations 
that are most informative of compound mecha-
nism of action. 

3.  DarwinOncoDrugBase™ relies on multiple time 
points, compound concentrations, and assay repli-
cates to generate systematic and accurate elucidation 
of compound MoA, including direct target proteins 
and compound activity effectors and modulators1, 16, 17,  
thereby producing accurate predictions of com-
pound activity in vivo.

Darwin|OncoDrugBase™
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Table 7: Key Differentiating Features and Capabilities Offered by DarwinOncoDrugBase™—New Paradigms and Drug Perturbation Profiling

Table 7. Key Differentiating features anD Capabilities offereD by 
DarwinonCoDrugbase™—new paraDigms anD Drug perturbation profiling

Features and Distinguishing Characteristics
DARWIN
OncoDrugBase™

Connectivity Map LINCS

Large-scale Compound Libraries YES YES YES

Multiple Tumor Subtypes/Lines >20 3 >10

Multiple Concentrations YES

Sub-lethal compound conc. YES

Genome-wide coverage YES YES

Full Microfluidic Automation YES

Demonstrated MoA elucidation YES

Demonstrated in vivo activity 
prediction YES

Selected FDA approved and  
experimental compounds YES

Cost LOW HIGH LOW
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The transcriptional network for
mesenchymal transformation of brain
tumours
Maria Stella Carro1*{, Wei Keat Lim2,3*{, Mariano Javier Alvarez3,4*, Robert J. Bollo8, Xudong Zhao1,
Evan Y. Snyder9, Erik P. Sulman10, Sandrine L. Anne1{, Fiona Doetsch5, Howard Colman11, Anna Lasorella1,5,6,
Ken Aldape12, Andrea Califano1,2,3,4 & Antonio Iavarone1,5,7

The inference of transcriptional networks that regulate transitions into physiological or pathological cellular states remains a
central challenge in systems biology. A mesenchymal phenotype is the hallmark of tumour aggressiveness in human
malignant glioma, but the regulatory programs responsible for implementing the associated molecular signature are largely
unknown. Here we show that reverse-engineering and an unbiased interrogation of a glioma-specific regulatory network
reveal the transcriptional module that activates expression of mesenchymal genes in malignant glioma. Two transcription
factors (C/EBPb and STAT3) emerge as synergistic initiators and master regulators of mesenchymal transformation. Ectopic
co-expression of C/EBPb and STAT3 reprograms neural stem cells along the aberrant mesenchymal lineage, whereas
elimination of the two factors in glioma cells leads to collapse of the mesenchymal signature and reduces tumour
aggressiveness. In human glioma, expression of C/EBPb and STAT3 correlates with mesenchymal differentiation and
predicts poor clinical outcome. These results show that the activation of a small regulatory module is necessary and
sufficient to initiate and maintain an aberrant phenotypic state in cancer cells.

High-grade gliomas (HGGs) are the most common brain tumours in
humans and are essentially incurable1. The defining hallmarks of the
aggressiveness of glioblastoma multiforme (GBM) are local invasion
and neo-angiogenesis2,3. A recently established notion postulates that
neoplastic transformation in the central nervous system (CNS) con-
verts neural cells into cell types manifesting a mesenchymal pheno-
type—a state associated with an uncontrolled ability to invade and
stimulate angiogenesis4,5. Gene expression studies have established
that overexpression of a ‘mesenchymal’ gene expression signature
(MGES) and loss of a proneural signature (PNGES) co-segregate
with the poor prognosis group of glioma patients4. Yet, differenti-
ation along the mesenchymal lineage is virtually undetectable in
normal neural tissue during development. Thus, it is unclear whether
drift towards the mesenchymal lineage is an aberrant event that
occurs during brain tumour progression or whether glioma cells
recapitulate the rare mesenchymal plasticity of neural stem cells
(NSCs)4–7. The molecular events that activate the MGES while sup-
pressing the PNGES signature, thus imparting a highly aggressive
phenotype to glioma cells, remain unknown.

Efforts to identify transcription factors (TFs) that are master regu-
lators (MRs) of specific cancer signatures, on the basis of cellular-
network models, have yet to produce experimentally validated
discoveries, probably because these networks are still poorly mapped,
especially within specific mammalian cellular contexts8. Notwith-
standing, recent developments in genome-wide reverse engineering
were successful in identifying causal, rather than associative

interactions9–12, and showed promise in the identification of dysregu-
lated genes within developmental and tumour-related pathways13–17.
Thus, we reasoned that context-specific regulatory networks, inferred
by unbiased reverse engineering algorithms, may provide sufficient
accuracy to allow estimation of (1) the activity of TFs from that of their
transcriptional targets or regulons, and (2) the identity of TFs that are
MRs of specific eukaryotic signatures18,19 from the overlap between
their regulons and the signatures. We applied the above mechanisms
to unravel the MRs causally linked to activation of the MGES in
malignant glioma (Supplementary Fig. 1).

A transcriptional module is linked to the MGES of HGGs

We first addressed whether copy number variation may account for
the aberrant expression of MGES genes in HGGs. Integrated analysis
of gene expression profiles and array comparative genomic hybridi-
zation (aCGH) of 76 HGGs showed no correlation between mean
expression and DNA copy number of MGES genes in proneural,
mesenchymal and proliferative tumours (Supplementary Fig. 2).

We thus used the ARACNe algorithm9 to assemble a genome-wide
repertoire of HGG-specific transcriptional interactions (the HGG-
interactome) from 176 gene expression profiles of grade III (anaplastic
astrocytoma) and grade IV (GBM) samples previously classified into
three molecular signature groups: proneural, proliferative and
mesenchymal (Supplementary Table 1a–c)4,20,21. ARACNe is an
information theoretical approach for the inference of TF-target inter-
actions from large sets of gene expression profiles9,16, further refined to
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determine directed (that is, causal) interactions12,22 (see Methods).
ARACNe predicted 92,660 transcriptional interactions, 1,217 of
which were between TFs and 102 out of 149 MGES genes4, represented
across all the gene expression profile data.

Next, we applied a new master regulator analysis (MRA) algorithm
to the HGG-interactome. The algorithm computes the statistical sig-
nificance of the overlap between the regulon of each TF (that is, its
ARACNe-inferred targets) and the MGES genes (P values computed
by Fisher’s exact test, FET). From a list of 928 TFs (Supplementary
Table 2), MRA inferred 53 MGES-specific TFs, at a false discovery rate
(FDR) , 5% (Supplementary Table 3a). These were ranked on the

basis of the total number of MGES targets they regulated. The top six
TFs (STAT3, C/EBP, bHLH-B2 (also known as bHLHE40), RUNX1,
FOSL2 and ZNF238) collectively controlled .74% of the MGES genes
(Fig. 1a). C/EBPb and C/EBPd were grouped as they form stoichi-
ometric homo- and heterodimers with identical DNA-binding
specificity and redundant transcriptional activity23. We thus use the
term C/EBP to indicate the TF complex with the union of their targets
as the corresponding regulon. Consistent with their previously
reported activity24,25, Spearman’s correlation analysis showed that five
of these TFs are probably activators (STAT3, C/EBP, bHLH-B2,
RUNX1 and FOSL2) and one is probably a repressor (ZNF238).
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Figure 1 | The mesenchymal signature of HGGs is controlled by six TFs.
a, TFs involved in activation of MGES targets are shown in pink, those
involved in repression are in purple. MGES targets controlled by these TFs
are in cyan. Overall, the six TFs control 74% of the genes in the mesenchymal
signature of high-grade glioma. A region between 2 kb upstream and
downstream the transcription start site of the target genes identified by
ARACNe was analysed for the presence of putative binding sites.

b–e, Genomic regions of genes containing putative binding sites for specific
TFs were immunoprecipitated in SNB75 cells by antibodies specific for
STAT3 (b), C/EBPb (c), FOSL2 (d), and bHLH-B2 (e). SOCS3 was included
as positive control of STAT3 binding. Total chromatin before
immunoprecipitation was used as positive control for PCR. The OLR1 gene
was used as negative control. f, Summary of binding results of the tested TFs
to mesenchymal targets.

ARTICLES NATURE

2
 Macmillan Publishers Limited. All rights reserved©2009

73



Overlap between the regulons of these TFs was highly significant
(Supplementary Table 4). MRA of the PNGES and Proliferative
(PROGES) signatures of HGGs detected virtually no overlap among
candidate MRs of the three signatures, with the notable exception of
few TFs inversely associated with MGES and PNGES activation
(Supplementary Table 5).

Next, we used stepwise linear regression to determine simple,
quantitative regulation models for each MGES gene. Specifically,
the log-expression of each MGES gene was fitted by the linear com-
bination of the log-expression of a small number of genes (1–5; see
Methods), selected among 53 ARACNe-inferred and 52 additional
TFs, whose DNA-binding signatures were enriched in the promoters
of MGES genes. Six TFs were in both lists, for a total of 99 TFs
(Supplementary Table 3b). TFs were then ranked on the basis of
the fraction of MGES genes they regulated. Surprisingly, the top six
MRA-inferred TFs were also among the eight controlling the largest
number of MGES targets, based on stepwise linear regression analysis
(Supplementary Table 6). Indeed, the three with the highest linear-
regression coefficient values were C/EBP (a 5 0.40), bHLH-B2
(a 5 0.41) and STAT3 (a 5 0.40), further establishing them as probable
MGES-MR candidates. The next strongest TF, ZNF238, had a nega-
tive coefficient (a 5 20.34) confirming its role as a candidate MGES
repressor.

Validation of the mesenchymal regulatory module

To determine whether these TFs bind the promoter region of their
predicted MGES targets, we performed chromatin immunoprecipita-
tion (ChIP) in a human glioma cell line. On average, TF-specific
antibodies but not control antibodies immunoprecipitated 80% of
the tested genomic regions (Fig. 1b–f). Lentivirus-mediated short
hairpin RNA (shRNA) silencing of CEBPB, STAT3, bHLH-B2,
FOSL2 and RUNX1 in glioma cells, followed by gene expression pro-
filing and Gene Set Enrichment Analysis (GSEA), showed that after
silencing of each TF, differentially expressed genes were highly enriched
in their ARACNe-inferred targets but not in those of control TFs with
equivalent regulon size (Supplementary Table 7a). Furthermore, dif-
ferentially expressed genes were also enriched in MGES genes
(Supplementary Table 7b).

Promoter occupancy analysis revealed a hierarchical and highly
modular topology, with eight out of ten possible intra-module inter-
actions implemented (modularity P 5 1.0 3 1028 by FET, Fig. 2c).
Specifically, CEBPb and STAT3 occupy their own promoter (Fig. 2a,
b); C/EBPb occupies the STAT3, FOSL2, bHLH-B2, CEBPB and
CEBPD promoters (Fig. 2a); STAT3 occupies those of FOSL2 and
RUNX1 (Fig. 2b); FOSL2 occupies those of RUNX1 and bHLH-B2
(Supplementary Fig. 3a), and bHLH-B2 only occupies the RUNX1
promoter (Supplementary Fig. 3b). C/EBP and STAT3 are at the top
of this hierarchical regulatory module. They have autoregulatory
loops and form feed-forward loops with a larger fraction of MGES
genes (43%) than any of the other TF pairs. shRNA-mediated co-
silencing of C/EBPb and STAT3 in glioma cells produced .2-fold
reduction of the messenger RNAs coding for the second layer TFs in
the feed-forward loops (bHLH-B2, FOSL2 and RUNX1; Fig. 2d),
supporting their role as MRs. C/EBPb and STAT3 also bound the
promoters of their MGES targets in primary human GBM (Sup-
plementary Fig. 3c, d).

To validate functionally the role of C/EBPb and STAT3 as MRs of
the MGES, we conducted gain- and loss-of-function experiments. We
transduced v-myc immortalized mouse NSCs (mNSCs) known as
C17.2 (refs 26–28), as well as primary mNSCs derived from the mouse
telencephalon at embryonic day (E)13.5, with retroviruses expressing
C/EBPb and a constitutively active form of STAT3 (STAT3C)29.
shRNA-mediated silencing targeted C/EBPb and STAT3 in the human
glioma cell line SNB19, and in serum-free cultures of tumour cells
derived from primary GBM that propel the formation of GBM-like
tumours after intracranial transplantation in immunodeficient mice30

(GBM-derived brain tumour initiating cells, GBM-BTICs; see later).

We generated a global data set of 89 individual samples, including 55
knockdown experiments in human glioma cells and 34 ectopic
expression experiments in mouse NSCs. Of the 149 genes in the
MGES, 118 could be mapped to murine genes represented on the
array (Supplementary Table 8). Quantitative PCR with reverse tran-
scription (qRT–PCR) analysis showed that, after CEBPB or STAT3
shRNA silencing in GBM-BTICs and SNB19 cells, the corresponding
mRNA levels were significantly reduced compared to non-target
control transduced cells (CEBPB fold ratio 5 0.26, P # 0.00108,
STAT3 fold ratio 5 0.205, P # 0.00109 by U-test). Reciprocal changes
followed ectopic expression of the two TFs in C17.2 cells and NSCs
(Supplementary Table 9). qRT–PCR values and microarray-based
measurements were highly correlated for STAT3 but not for CEBPB
mRNA (Supplementary Fig. 4). Thus, we used the qRT–PCR values
for CEBPB and STAT3 as more accurate read-outs for their mRNA
expression. GSEA confirmed that genes co-expressed with the two TFs
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Figure 2 | A hierarchical transcriptional module regulates the MGES.
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emerging from promoter occupancy analysis. d, qRT–PCR of mesenchymal
TFs in glioma cells infected with STAT3 and CEBPB shRNA or control (ctrl)
lentiviruses. Error bars are s.d. e, Venn-diagram depicts the proportion of
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STAT3 or both TFs. f, Heatmap of MGES gene expression analysis of mouse
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were enriched in their respective ARACNe-inferred regulon genes but
not in those of control TFs (Supplementary Table 10). Perturbation of
C/EBPb (Supplementary Fig. 5a, c) or STAT3 (Supplementary Fig. 5b,
d) specifically affected the MGES signature (P 5 2.69 3 1022 and
P 5 2.0 3 1024, respectively, by GSEA). Common targets of C/EBP
and STAT3 were eightfold more enriched in MGES genes than targets
controlled individually by each TF (Fig. 2e, P 5 2.25 3 1025). To test
whether the two TFs may be involved in synergistic MGES control, we
computed a metagene (CEBPB 3 STAT3) with expression propor-
tional to the product of their mRNAs, such that the metagene should
be highly correlated with the expression profile of any target synergis-
tically regulated by the two TFs, under a multiplicative model (Fig. 2f).
GSEA confirmed that genes ranked by Spearman’s correlation to the
CEBPB 3 STAT3 metagene were significantly enriched in MGES
genes (Fig. 2g), suggesting that at least a subset of the MGES is syner-
gistically regulated by the CEBPB 3 STAT3 pair.

We sought to establish (1) whether MRs inferred by our procedure
would also be inferred when using an independent glioma sample data
set, and (2) whether MRs identified on the basis of clinical outcome
would overlap significantly with those inferred from MGES analysis.
The Atlas-TCGA data set31 includes 77 and 21 samples associated with
worst- and best-prognosis, respectively (92 samples with intermediate
prognosis were not considered). Differential expression analysis iden-
tified a TCGA worst-prognosis signature (TWPS), comprising 884
genes differentially expressed in the worst-prognosis versus best-
prognosis samples (at P # 0.05 by Student’s t-test, Supplementary
Table 11). GSEA confirmed that MGES genes were markedly enriched
in the TWPS signature (P # 1.0 3 1024, Supplementary Fig. 6) indi-
cating that the poor-prognosis group in the Atlas-TCGA data set dis-
plays marked mesenchymal features. Despite partial overlap between

MGES and TWPS genes (22.8%), five of the six MRs identified by
MRA from the original data set were also found among the ten most
significant TFs identified by MRA of the Atlas-TCGA data set using
the TWPS signature. C/EBP was the most significant TF, and STAT3
was in seventh position. C/EBPb and C/EBPd had the first and second
best linear-regression coefficient by stepwise linear regression analysis,
respectively (Supplementary Table 12). These results indicate sig-
nificant robustness of the approach both to data set and signature
selection.

Mesenchymal reprogramming of NSCs by C/EBPb and STAT3

We tested whether combined and/or individual expression of
STAT3C and C/EBPb in NSCs is sufficient to trigger the mesenchymal
phenotype that characterizes HGGs. The introduction of C/EBPb
and STAT3C into C17.2 NSCs caused loss of neuronal differentiation
and manifestation of a fibroblast-like morphology (Supplementary
Fig. 7a, b). The morphological changes were associated with gain of
expression of the mesenchymal marker proteins smooth muscle alpha
actin (SMA, encoded by Acta2) and fibronectin (Fig. 3a and Sup-
plementary Fig. 7c, d), and with induced expression of the mesench-
ymal genes Chi3l1 (also known as Ykl40), Acta2, Ctgf and Osmr
(Fig. 3b). The individual expression of STAT3C or C/EBPb was
generally insufficient to induce expression of either mesenchymal
marker proteins or mesenchymal genes (Fig. 3a, b). Removal of
mitogens to STAT3C plus C/EBPb-expressing C17.2 cells resulted in
a further increase in the expression of mesenchymal genes, and com-
plete acquisition of mesenchymal properties such as positive alcian
blue staining, a specific assay for chondrocyte differentiation (Fig. 3c
and Supplementary Fig. 7e, f). The expression of STAT3C and C/EBPb
promoted migration in a wound assay, and triggered invasion through
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Figure 3 | Ectopic expression of C/EBPb and STAT3C in NSCs induces
mesenchymal transformation and inhibits neural differentiation.
a, Immunofluorescence analysis for SMA and fibronectin in C17.2 cells
expressing the indicated TFs. DAPI, 49,6-diamidino-2-phenylindole.
b, qRT–PCR of mesenchymal targets in C17.2 cells expressing the indicated
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presence of PDGF. n 5 3; error bars denote mean 1 s.e.m.
f, Immunofluorescence analysis for CTGF in NSCs expressing STAT3C and
C/EBPb or the empty vector. Green fluorescent protein (GFP) identifies
infected cells. g, Quantification of GFP1 CTGF1 cells. Error bars denote
mean 6 s.d. of three independent experiments. h, qRT–PCR of
representative mesenchymal genes in primary NSCs expressing the indicated
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the extracellular matrix in a Matrigel invasion assay in the absence or
presence of PDGF (Fig. 3d, e and Supplementary Fig. 7g). The com-
bined but not individual expression of STAT3C and C/EBPb effi-
ciently induced mesenchymal marker proteins and mesenchymal
gene expression in primary NSCs (Fig. 3f–h). Conversely, STAT3C
and C/EBPb abolished differentiation along the neuronal and glial
lineages (Fig. 3i and Supplementary Fig. 7h). The C/EBPb- and
STAT3C-induced mesenchymal transformation of primary NSCs
was associated with withdrawal from the cell cycle (data not shown).
Thus, the combined introduction of C/EBPb and STAT3C in NSCs
prevents neural differentiation and triggers reprogramming towards
an aberrant mesenchymal lineage.

Mesenchymal aggressiveness of glioma by C/EBPb and STAT3

Transduction of GBM-BTIC cultures derived from two GBM
patients (BTSC-20 and BTSC-3408) with specific shRNA-carrying
lentiviruses silenced endogenous C/EBPb and STAT3, eliminated
expression of mesenchymal genes, and depleted the tumour cells of
the mesenchymal marker proteins fibronectin, collagen-5a1 and
YKL40. Individual silencing of C/EBPb or STAT3 produced variable
inhibitory effects, with the silencing of C/EBPb typically carrying the
most severe consequences (Fig. 4a–e and Supplementary Fig. 8a).
Combined or individual silencing of C/EBPb and STAT3 in the
human glioma cell line SNB19 produced similar effects (Sup-
plementary Fig. 8b–e). Silencing of the two TFs in SNB19 cells and
GBM-BTICs reduced their ability to invade through Matrigel by
.70% (Fig. 4f–i). Next, we determined the effect of CEBPB and
STAT3 knockdown on brain tumorigenesis after intracranial injec-
tion of SNB19 cells in immunocompromised mice. We observed
efficient tumour formation in all mice injected with control or
STAT3 shRNA cells. However, only one of four mice from the

CEBPB shRNA and one of five mice from the combined CEBPB
and STAT3 shRNA groups developed tumours 120 days after the
injection (Fig. 5b). The histological analysis demonstrated high-
grade tumours, which displayed peripheral invasion of the surround-
ing brain as single cells and cell clusters in the shRNA control group,
as shown by anti-human vimentin staining (Fig. 5a). Staining for the
endothelial marker CD31 revealed marked vascularization in the
control shRNA tumour group. Conversely, the single tumour in
the CEBPB plus STAT3 shRNA group grew well circumscribed and
was less angiogenic. Tumours in the STAT3 shRNA group and the
single tumour in the CEBPB shRNA group had an intermediate
growth pattern and limited angiogenesis. Staining for fibronectin,
collagen-5a1 and YKL40 was readily detected in the tumours from
the control group but absent or barely detectable in the single
tumours from the CEBPB shRNA and CEBPB plus STAT3 shRNA
groups (Fig. 5a). Tumours derived from Stat3 shRNA cells showed an
intermediate phenotype, with reduced expression of mesenchymal
markers compared with tumours in the control shRNA group, but
higher than that observed in the tumours in the CEBPB shRNA
and CEBPB plus STAT3 shRNA groups (control shRNA . STAT3
shRNA . CEBPB shRNA . CEBPB1STAT3 shRNA). Intracranial
transplantation of GBM-BTICs transduced with control shRNA
lentivirus produced extremely invasive tumour cell masses extending
through the corpus callosum to the contralateral brain. Combined
knockdown of CEBPB and STAT3 led to a significant decrease in
the tumour area and tumour cell density (as evaluated by human
vimentin staining), markedly reduced the proliferation index
(Fig. 5c–e), and abolished expression of the mesenchymal markers
fibronectin and collagen-5a1 (Fig. 5f, g).

Finally, we conducted immunohistochemical analysis for C/EBPb
and active, phospho-STAT3 in human tumour specimens, and
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Figure 4 | C/EBPb and STAT3 maintain the mesenchymal phenotype of
human glioma cells. a, Immunofluorescence for fibronectin, collagen-5a1
(COL5A1) and YKL40 in BTSC-3408 infected with lentiviruses expressing
STAT3, CEBPB or STAT3 plus CEBPB shRNA. b–d, Quantification of cells
positive for fibronectin (b), COL5A1 (c) and YKL40 (d). n 5 3 independent
experiments; error bars indicate mean 6 s.d. e, qRT–PCR of mesenchymal
genes in BTSC-20 infected with lentiviruses expressing STAT3, CEBPB or
STAT3 plus CEBPB shRNA. Gene expression was normalized to 18S
ribosomal RNA expression. n 5 3; error bars indicate mean 6 s.d.

f, Microphotograps of invading SNB19 cells infected with lentiviral vectors
expressing control or STAT3 plus CEBPB shRNA. g, Quantification of
SNB19-invading cells. Error bars indicate mean 6 s.d.; n 5 6 (two
independent experiments, each performed in triplicate). h, Invading BTSC-
3408 cells infected with control, STAT3, CEBPB or STAT3 plus CEBPB
shRNA lentiviruses. i, Quantification of invading BTSC-3408 cells. Error
bars indicate mean 6 s.d.; n 5 6 (two independent experiments, each
performed in triplicate). *P # 0.05, **P # 0.01, ***P # 0.001.

NATURE ARTICLES

5
 Macmillan Publishers Limited. All rights reserved©2009

76



compared their expression with that of YKL40 (a well-established
mesenchymal protein expressed in primary human GBM)21,32 and
with patient outcome in a collection of 62 GBM (Supplementary
Fig. 9). Expression of either C/EBPb or STAT3 was significantly asso-
ciated with YKL40 expression (C/EBPb, P 5 4.9 3 1025; STAT3,
P 5 2.2 3 1024), with higher association in double-positive tumours
(C/EBPb1 STAT31, P 5 2.7 3 1026) versus double-negative ones
(C/EBPb2 STAT32, Supplementary Table 13). Double-positive
tumours were associated with worse clinical outcome than either
single- or double-negative tumours (log-rank test, P 5 0.0002,
Fig. 5h). Positivity for either of the two TFs remained predictive of
negative outcome but with lower statistical strength than double
positivity (C/EBPb, P 5 0.0022; STAT3, P 5 0.0017).

Discussion

We have shown that inference of context-specific regulatory network
identifies the transcriptional module that controls expression of the
mesenchymal signature associated with poor prognosis in HGGs. In
this approach, the traditional model of gene-expression-profile-
based cancer research, yielding long lists of differentially expressed
genes (that is, cancer signatures), becomes only a starting point for a
cellular-network analysis, where a causal regulatory model identifies
the TFs controlling the signatures and related phenotypes.

Recently, there have been several unsuccessful attempts to identify
common expression signatures predictive of the same cellular pheno-
type33. Our approach produced virtually identical regulatory MR
modules when applied to two completely distinct data sets and
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Figure 5 | C/EBPb and STAT3 are essential for glioma tumour
aggressiveness in mice and humans. a, Immunofluorescence staining for
human vimentin, CD31, fibronectin, COL5A1 and YKL40 in tumours
derived from SNB19 cells infected with lentiviruses expressing shRNA
targeting STAT3, CEBPB, or STAT3 plus CEBPB. B, normal brain; T, tumour.
b, Kaplan–Meier survival curve of NOD/SCID mice transplanted
intracranially with SNB19 glioma cells transduced with control shRNA (red),
STAT3 shRNA (black), CEBPB shRNA (green) or STAT3 plus CEBPB shRNA
(blue) lentiviruses. c, Immunostaining for human vimentin and Ki67 on

representative brain sections from mice injected with BTSC-3408 after
silencing of C/EBPb and STAT3. CC, corpus callosum; St, striatum.
d, Quantification of human vimentin-positive area. a.u., arbitrary units. Error
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signatures associated with poor prognosis in HGGs, thus indicating
that MRs of mammalian phenotype signatures may be significantly
more conserved than the complement of differentially expressed
genes. Other methods, including differential expression analysis,
DNA-binding-site enrichment analysis8 and relevance network ana-
lysis34 could not identify C/EBPb and STAT3 as MRs (see
Supplementary Note 2). This suggests that enrichment analysis of
ARACNe-inferred TF regulons is specifically useful for the identifica-
tion of MRs of cellular phenotypes. Our results do not exclude that
other graph-theoretical methods such as Bayesian networks might
provide further fine-grain regulatory insight once the number of
candidate MRs is reduced to a handful by methods such as those
proposed here. Yet, once a relatively small number of TFs is iden-
tified, direct experimental validation is feasible.

The experimental follow-up established that C/EBPb and STAT3 are
MRs sufficient in NSCs and necessary in human glioma cells for
mesenchymal transformation. Interestingly, C/EBPb and STAT3 are
expressed in the developing nervous system35–38. However, although
STAT3 induces astrocyte differentiation and inhibits neuronal differ-
entiation of neural stem/progenitor cells, C/EBPb promotes neuro-
genesis and opposes gliogenesis39–41. A question remains as to how
the combined activity of C/EBPb and STAT3 can reprogram NSCs
towards an aberrant lineage (mesenchymal) and oppose the genesis
of the normal neural lineages (neuronal and glial). We propose that
mesenchymal transformation results from the concurrent activation of
two conflicting transcriptional regulators normally operating to funnel
opposing signals (neurogenesis versus gliogenesis). This condition is
intolerable by normal neural stem/progenitor cells, whereas it operates
to permanently drive the aberrant mesenchymal phenotype in the
context of the genetic and epigenetic changes that accompany high-
grade gliomagenesis (for example, EGFR amplification, PTEN loss, Akt
activation)4. Because expression of C/EBPb and STAT3 in human
glioma is essential to maintain the tumour initiating capacity and
the ability to invade the normal brain, the two TFs provide important
clues for diagnostic and pharmacological intervention. Consistent with
this, the combined expression of C/EBPb and STAT3 is linked to the
mesenchymal state of primary GBM, and provides an excellent pro-
gnostic biomarker for tumour aggressiveness.

Thus, systems biology methods can be effectively used to infer MRs
that choreograph malignant transformation. This model will be
applicable to the dissection of other phenotypic states.

METHODS SUMMARY
Cell culture. Primary NSCs were isolated from E13.5 mouse telencephalon, and

cultured in the presence of FGF2 and EGF as described42. Differentiation was

induced by culturing NSCs in NSC medium without EGF and FGF2. GBM-

derived BTICs were grown in Neurobasal media supplemented with FGF2 and

EGF.

Generation of transcriptional network, microarrays and qRT–PCR. GBM

transcriptional network was generated by ARACNe12. Total RNA was reverse

transcribed to complementary DNA and amplified using primers specific for

human and murine transcripts. Expression values were calculated relative to the

18S ribosomal RNA. RNA was used for analysis on Illumina HumanHT-12v3 or

MouseWG-6 expression BeadChip. Sample information is in Methods.

Master regulator analysis. For each TF, the statistical significance of the inter-

section between the TF-regulon and the gene expression signature was computed

by FET. Significant genes were ranked on the basis of the number of overlapping

genes.

GSEA. The statistical significance of the enrichment of a ranked list of genes in a

smaller set of genes was determined as described43.

Stepwise linear regression. The regulatory model of each gene was determined

by identifying the smallest number of TFs that were informative for the expres-

sion of that gene across the data set. TFs were added to the model one at the time,

until the error reduction produced by adding another TF was no longer statisti-

cally significant. Models had on average 1–5 TFs.

Intracranial injection of glioma cells. SNB19 glioma cell line and GBM-derived

BTICs were injected into the brain of 6–8 weeks NOD/SCID mice 48 h after

infection with lentiviruses carrying shRNAs using a stereotaxic frame. Animals

were monitored and euthanized when they presented with signs of tumour.

Mouse research was approved by the Committee for Animal Care, and con-

ducted in compliance with the Animal Welfare Act Regulations.

Full Methods and any associated references are available in the online version of
the paper at www.nature.com/nature.
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METHODS
Array comparative genomic hybridization expression correlation. The cor-

relation between gene expression and DNA copy number for the MGES genes

was determined using data from 76 high-grade gliomas for which both gene

expression array and aCGH profiling were performed4. Tumours were grouped

on the basis of molecular subtype (mesenchymal, proneural or proliferative) and

the mean expression for MGES genes were determined in each group. The

normalized copy number of each gene was interpolated based on the copy

number of the nearest genomic clone on the CGH array as determined by

comparison of the sequence annotation of both array platforms, as previously

described21.

ARACNe network reconstruction. ARACNe (Algorithm for the Reconstruction

of Accurate Cellular Networks), an information-theoretic algorithm for infer-

ring transcriptional interactions, was used to identify a repertoire of candidate

transcriptional regulators of the MGES genes. Expression profiles used in the

analysis were previously characterized using Affymetrix HU-133A microarrays

and preprocessed by MAS 5.0 normalization procedure4. First, candidate inter-

actions between a TF (x) and its potential target (y) are identified by computing

pairwise mutual information, MI[x; y], using a Gaussian kernel estimator12 and

by thresholding the mutual information based on the null-hypothesis of statisti-

cal independence (P , 0.05, Bonferroni corrected for the number of tested

pairs). Then, indirect interactions are removed using the data processing

inequality, a well-known property of the mutual information. For each TF-target

pair (x, y) we considered a path through any other TF (z) and remove any

interaction such that MI½x; y�vmin(MI½x; z�,MI½y,z�).
TF classification. To identify human TFs, we selected the human genes anno-

tated as ‘transcription factor activity’ in Gene Ontology and the list of TFs from

TRANSFAC. From this list, we removed general TFs (for example, stable com-

plexes such as polymerases or TATA-box-binding proteins), and added some

TFs not annotated by Gene Ontology, producing a final list of 928 TFs that were

represented on the HU-133A microarray gene set.

Master regulator analysis. The MRA has two steps. First, for each TF its sig-

nature-enrichment is computed as the P value of the overlap between the TF-

regulon and the signature genes (that is, the MGES genes in this case), assessed by

FET. Because FET depends on regulon size, it can be used to assess signature-

enriched TFs but not to rank them. TFs are thus ranked based on the total

number of signature genes included in their regulon, under the assumption that

TFs controlling a larger fraction of the signature will be more likely to determine

its activity.

Stepwise linear regression analysis. A regulatory program for each MGES gene

was computed as follows: the log2 expression of the i-th MGES gene was con-

sidered as the response variable and the log2-expression of the TFs as the explana-

tory variables in the linear model log xi~
P

aij log fjzbij (ref. 44). Here, fj
represents the expression of the j-th TF in the model and the (aij, bij) are linear

coupling coefficients computed by standard regression analysis. TFs are itera-

tively added to the model, by choosing each time the one producing the smallest

relative error E~
P
jxi{xi0j=xi0 between predicted and observed target

expression. This is repeated until the decrease in relative error is no longer

statistically significant, based on permutation testing. To avoid excessive mul-

tiple hypothesis testing correction, TFs were chosen only among the following:

(1) the 53 inferred by ARACNe at FDR , 0.05, and (2) TFs whose DNA-binding

signature was significantly enriched in the proximal promoter of the MGES

genes and that are expressed in the data set, based on the coefficient of variation

(CV $ 0.5). TFs were then ranked based on the number of MGES target they

regulated, with the average linear-regression coefficient providing further

insight. The log-transformation allows convenient linear representation of

multiplicative interactions between TF activities44,45. TFs were individually

added to the model, each time selecting the one contributing the most significant

reduction in relative expression error (predicted versus observed), until error-

reduction was no longer significant.

Enrichment analysis. The FDRs are computed using procedures described by

Benjamini and Hochberg46, where the adjusted P values, q 5 p*n/i (p 5 P value,

n 5 total number of tests, i 5 sorted rank of P value). It is a less conservative

procedure to correct for multiple comparisons than family-wise error rate

(FWER), especially when the number of tests is large.

Cell lines and cell culture conditions. SNB75, SNB19, 293T and Phoenix cell

lines were grown in DMEM plus 10% FBS (Gibco/BRL). GBM-derived BTICs

were grown as neurospheres in Neurobasal media (Invitrogen) containing N2

and B27 supplements (Invitrogen), and human recombinant FGF2 and EGF

(50 ng ml21 each; Peprotech). mNSCs (from an early passage of clone C17.2)

(26–28) were cultured in DMEM plus 10% heat-inactivated FBS (Gibco/BRL),

5% horse serum (Gibco/BRL) and 1% L-glutamine (Gibco/BRL). Neuronal

differentiation of mNSCs was induced by growing cells in DMEM supplemented

with 0.5% horse serum. For chondrocyte differentiation, cells were treated with

STEMPRO chondrogenesis differentiation kit (Gibco/BRL) for 20 days. Primary

mNSCs were isolated from E13.5 mouse telencephalon and cultured in the

presence of FGF2 and EGF (20 ng ml21 each) as described42. Differentiation of

NSCs was induced by culturing neurospheres on laminin-coated dishes in NSC

medium in the absence of growth factors. mNSCs expressing STAT3C and

C/EBPb were generated by retroviral infections using supernatant from

Phoenix ecotropic packaging cells transfected with pBabe-STAT3C-Flag and/

or pLZRS-T7-His-C/EBPb-2–IRES-GFP.

Promoter analysis and ChIP. Promoter analysis was performed using the

MatInspector software (http://www.genomatix.de). A sequence 2 kb upstream

and 2 kb downstream from the transcription start site was analysed for the

presence of putative binding sites for each TF. Primers used to amplify sequences

surroundings the predicted binding sites were designed using the Primer3 soft-

ware (http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi) and are listed

in Supplementary Table 14.

ChIP was performed as described47. SNB75 cell lysates were precleared with

Protein A/G beads (Santa Cruz) and incubated at 4 uC overnight with 1 mg of

polyclonal antibody specific for C/EBPb (sc-150, Santa Cruz), STAT3 (sc-482,

Santa Cruz), FOSL2 (Fra2, sc-604, Santa Cruz), bHLH-B2 (A300-649A,

BETHYL Laboratories), or normal rabbit immunoglobulins (Santa Cruz).

DNA was eluted in 200ml of water and 1 ml was analysed by PCR with

Platinum Taq (Invitrogen). For primary GBM samples, 30 mg of frozen tissue

was transferred in a tube with 1 ml of culture medium, fixed with 1% formalde-

hyde for 15 min and stopped with 0.125 M glycine for 5 min. Samples were

centrifuged at 1,500g for 2 min, washed twice and diluted in PBS. Tissues were

homogenized using a pestle and suspended in 3 ml of ice-cold immunoprecipi-

tation buffer with protease inhibitors and sonicated. ChIP was then performed as

described above.

qRT–PCR and microarray analysis. RNA was prepared with RiboPure kit

(Ambion), and used for first-strand cDNA synthesis using random primers

and SuperScriptII Reverse Transcriptase (Invitrogen). qRT–PCR was performed

using Power SYBR Green PCR Master Mix (Applied Biosystems). Primers are

listed in Supplementary Table 15. qRT–PCR results were analysed by the DDCT

method48 using 18S as a housekeeping gene.

RNA amplification for array analysis was performed with Illumina TotalPrep

RNA Amplification Kit (Ambion). One-and-a-half micrograms of amplified

RNA was hybridized on Illumina HumanHT-12v3 (including 24,385 human

genes) or MouseWG-6 (including 20,311 mouse genes) expression BeadChip

according to the manufacturer’s instructions. Hybridization data was obtained

with an iScan BeadArray scanner (Illumina) and pre-processed by variance

stabilization and robust spline normalization implemented in the lumi package

under the R-system49.

Immunofluorescence and immunohistochemistry. Immunofluorescence stain-

ing was performed as previously described50. Primary antibodies and dilutions

were: SMA (mouse monoclonal, Sigma, 1:200), fibronectin (mouse monoclonal,

BD Biosciences, 1:200), Tau (rabbit polyclonal, Dako, 1:400), bIII-tubulin

(mouse monoclonal, Promega, 1:1,000), CTGF (rabbit polyclonal, Santa Cruz,

1:200), YKL40 (rabbit polyclonal, Quidel, 1:200) and COL5A1 (rabbit polyclonal,

Santa Cruz, 1:200). Confocal images acquired with a Zeiss Axioscop2 FS MOT

microscope were used to score positive cells. At least 500 cells were scored for each

sample. Quantification of the fibronectin intensity staining in mNSCs was per-

formed using NIH Image J software (http://rsb.info.nih.gov/ij/). The histogram of

the intensity of fluorescence of each point of a representative field for each con-

dition was generated. The fluorescence intensity of three fields from three inde-

pendent experiments was scored, standardized to the number of cells in the field

and divided by the intensity of the vector. For immunostaining of xenograft

tumours, mice were perfused transcardially with 4% paraformaldehyde (PFA),

brains were dissected and post-fixed for 48 h in 4% PFA. Immunostaining was

performed as previously described51. Primary antibodies and dilutions: fibronec-

tin (mouse monoclonal, BD Bioscences, 1:100), COL5A1 (rabbit polyclonal,

Santa Cruz, 1:100), YKL40 (rabbit polyclonal, Quidel, 1:100), human vimentin

(mouse monoclonal, Sigma, 1:50), and Ki67 (rabbit polyclonal, Novocastra

laboratories, 1:1,000). Quantification of the tumour area was obtained by mea-

suring the human vimentin-positive area in the section using the NIH Image J

software (http://rsb.info.nih.gov/ij/). Five tumours for each group were analysed.

For quantification of Ki67, the percentage of positive cells was scored in five

tumours per each group. In histograms the values represents the mean values;

error bars are standard deviations. Statistical significance was determined by t-test

(with Welch’s correction) using GraphPad Prism 4.0 software (GraphPad Inc.).

Immunohistochemistry of primary human GBM was performed as previously

described52. The primary antibodies and dilutions were: anti-YKL40 (rabbit poly-

clonal, Quidel, 1:750), anti-C/EBPb, (rabbit polyclonal, Santa Cruz, 1:250) and

anti-p-STAT3 (rabbit monoclonal, Cell Signaling, 1:25). Scoring for YKL40 was
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based on a three-tiered system, where 0 was ,5% of tumour cells positive, 1 was
5–30% positivity, and 2 was .30% of tumour cells positive. Scores of 1 and 2 were

later collapsed into a single value for display purposes on Kaplan–Meier curves.

Associations between C/EBPb/STAT3 and YKL40 were assessed using the FET.

Associations between C/EBPb/STAT3 and patients survival were assessed using

the log-rank (Mantel-Cox) test of equality of survival distributions.

Migration and invasion assays. For the wound assay testing migration, mNSCs

were plated in 60-mm dishes and grown until 95% confluence. A scratch of

approximately 1,000mm was made with a P1000 pipette tip and images were taken

every 24 h with an inverted microscope. For the Matrigel invasion assay, mNSCs

and SNB19 cells (1 3 104) were added to the upper compartment of a 24-well

BioCoat Matrigel Invasion Chamber (BD Bioscences) in serum-free DMEM. The

lower compartment of the chamber was filled with DMEM containing either 0.5%

horse serum or 20mg ml21 PDGF-BB (R&D systems) as a chemoattractant. After

24 h, invading cells were fixed, stained according to the manufacturer’s instruc-

tions and counted. For GBM-derived BTICs, 5 3 104 cells were plated on the upper

chamber in the absence of growth factors. In the lower compartment Neurobasal

medium containing B27 and N2 supplements plus 20mg ml21 PDGF-BB (R&D

systems) was used as chemoattractant.
Lentivirus infection. Lentiviral expression vectors carrying shRNAs were pur-

chased from Sigma. The sequences are listed in Supplementary Table 16. To

generate lentiviral particles, each shRNA expression plasmid was co-transfected

with pCMV-dR8.91 and pCMV-MD2.G vectors into human embryonic kidney

293T cells using Fugene 6 (Roche). Lentiviral infections were performed as

described51.

Intracranial injection. Intracranial injection of the SNB19 glioma cell line and

GBM-derived BTICs was performed in 6–8-week NOD/SCID mice (Charles

River laboratories) in accordance with guidelines of the International Agency

for Reserch on Cancer’s Animal Care and Use Committee. In brief, 48 h after

lentiviral infection, 2 3 105 SNB19 cells or 3 3 105 BTICs were injected 2 mm

lateral and 0.5 mm anterior to the bregma, 3 mm below the skull. Mice were

monitored daily and euthanized when neurological symptoms appeared. A

Kaplan–Meier survival curve of the mice injected with SNB19 glioma cells was

generated using the DNA Statview software package (AbacusConcepts).
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SUMMARY

To identify regulatory drivers of prostate cancer malignancy, we have assembled genome-wide regulatory
networks (interactomes) for human and mouse prostate cancer from expression profiles of human tumors
and of genetically engineered mouse models, respectively. Cross-species computational analysis of these
interactomes has identified FOXM1 and CENPF as synergistic master regulators of prostate cancer malig-
nancy. Experimental validation shows that FOXM1 and CENPF function synergistically to promote tumor
growth by coordinated regulation of target gene expression and activation of key signaling pathways
associated with prostate cancer malignancy. Furthermore, co-expression of FOXM1 and CENPF is a robust
prognostic indicator of poor survival andmetastasis. Thus, genome-wide cross-species interrogation of reg-
ulatory networks represents a valuable strategy to identify causal mechanisms of human cancer.

INTRODUCTION

It is widely appreciated that cancer is not a single entity but rather

a highly individualized spectrum of diseases characterized by a

large number of molecular alterations (Hanahan and Weinberg,

2011). Distinguishing those that constitute true drivers of cancer

phenotypes from the multitude that are simply deregulated has

proven to be a daunting task, which is further exacerbated by

Significance

Genetically engineered mouse models have been widely used for in vivo analyses of cancer phenotypes as well as preclin-
ical investigations. However, inherent species differences often hinder the appropriate extrapolation of studies performed in
mice to human cancer. Here we introduce a strategy using cross-species computational analysis of context-specific regu-
latory networks for the effective integration of experimental findings frommousemodels and human cancer. This approach
enables the identification of conserved master regulators of malignant prostate cancer, as well as elucidation of their syn-
ergistic interactions. This computational paradigm should be broadly applicable for elucidating causal mechanisms of can-
cer, as well as integrating preclinical analyses from mouse to man.
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the complexity of elucidating how such drivers interact synergis-

tically to elicit cancer phenotypes. In this regard, prostate cancer

is particularly challenging because its notorious heterogeneity,

combined with a relative paucity of recurrent gene mutations,

has made it especially difficult to identify molecularly distinct

subtypes with known clinical outcomes (Baca et al., 2013;

Schoenborn et al., 2013; Shen and Abate-Shen, 2010). Addition-

ally, whereas most early-stage prostate tumors are readily

treatable (Cooperberg et al., 2007), advanced prostate cancer

frequently progresses to castration resistance, which is often

metastatic and nearly always fatal (Ryan and Tindall, 2011; Scher

and Sawyers, 2005). Thus, there is a pressing need to identify

bona fide determinants of aggressive prostate cancer as well

as prognostic biomarkers of disease outcome.

Analysis of genetically engineered mouse models (GEMMs)

can circumvent inherent challenges associated with the intrinsic

complexity of more heterogeneous human cancer phenotypes.

Indeed, investigations of mouse models of prostate cancer

have contributed to characterization of disease-specific path-

ways, led to the identification of biomarkers of disease progres-

sion, and provided useful preclinical models for prevention and

therapy (Irshad and Abate-Shen, 2013; Ittmann et al., 2013).

Following the description of an initial transgenic model nearly

20 years ago, there are now numerous GEMMs that collectively

model key molecular pathways deregulated in human prostate

cancer, and recapitulate the various stages of disease pro-

gression including preinvasive lesions (prostatic intraepithelial

neoplasia; PIN), adenocarcinoma, castration resistance, and

metastasis (Irshad and Abate-Shen, 2013; Ittmann et al., 2013).

However, inherent species differences often hinder direct

comparative analyses of mouse models and human cancer.

Indeed, such analyses would greatly benefit from computa-

tional approaches that enable accurate cross-species inte-

gration of regulatory information from mouse to man. Recent

advances in systems biology have led to the reverse engineer-

ing of regulatory networks (interactomes) that integrate large-

scale data sets encompassing expression profiles, protein-pro-

tein interactions, genomic alterations, and epigenetic changes

associated with cancer and other diseases (Lefebvre et al.,

2012). However, whereas individual analyses of human and

murine interactomes have led to relevant biological discoveries,

their cross-species interrogation has not been systematically

implemented.

Here, we introduce an approach for accurate cross-species

analysis of conserved cancer pathways based on reverse

engineering of genome-wide regulatory networks (i.e., interac-

tomes) representing both human and mouse prostate cancer.

To accomplish this, we have produced a regulatory network

based on in vivo perturbation of a repertoire of mouse cancer

models and implemented comparative analysis with a comple-

mentary regulatory network generated from human prostate

cancer data sets. Cross-species computational interrogation of

these paired interactomes, followed by experimental and clinical

validation, has elucidated the synergistic interaction of FOXM1

and CENPF as a driver of prostate cancer malignancy. We

propose that analyses of genome-wide, cross-species regula-

tory networks will provide an effective paradigm for elucidating

causal mechanisms of human cancer and other complex

diseases.

RESULTS

We developed a strategy for genome-wide interrogation of can-

cer phenotypes based on accurate integration of experimental

data from model organisms and human cancer (Figure 1). First,

we generated regulatory networks (interactomes) for human

and mouse prostate cancer using the Algorithm for the Recon-

struction of Accurate Cellular Networks (ARACNe; Basso et al.,

2005; Margolin et al., 2006b). We next evaluated the suitability

of these mouse and human interactomes for cross-species

interrogation using a computational approach to assess the

global conservation of their transcriptional programs. We then

used the Master Regulator Inference algorithm (MARINa; Carro

et al., 2010; Lefebvre et al., 2010) to infer candidate master reg-

ulators that act individually or synergistically to drive malignant

prostate cancer. Finally, we performed experimental studies

to validate synergistic interactions of master regulators, to

elucidate underlying mechanisms, and to evaluate their clinical

relevance.

Assembly of Interactomes for Human and Mouse
Prostate Cancer
ARACNe is an unbiased algorithm that infers direct transcrip-

tional interactions based on the mutual information between

each transcriptional regulator and its potential targets. For

optimal analyses, ARACNe requires large data sets of gene

expression profiles (R100) having significant endogenous (i.e.,

genetic) and/or exogenous (i.e., perturbation-induced) hetero-

geneity. To assemble a human prostate cancer interactome,

we analyzed the expression profile data set reported elsewhere

(Taylor et al., 2010), which is ideally suited for ARACNe because:

(1) it is relatively large (n = 185) and diverse, including primary

tumors, adjacent normal tissue, metastases, and cell lines; (2)

its primary tumors encompass the full range of pathological

Gleason scores and have well-annotated clinical outcome

data; and (3) it displays extensive genetic diversity and tumor

heterogeneity, as shown by t-Distributed Stochastic Neighbor

Embedding (t-SNE) analysis (Figure 2; Table S1 available online).

Notably, interactomes assembled from three alternative human

prostate cancer data sets (Table S1) were neither as complete

nor as extensive (data not shown).

To assemble a corresponding mouse prostate cancer interac-

tome, it was first necessary to generate an expression profile

data set of appropriate size and representing sufficient expres-

sion variability. We selected 13 distinct GEMMs, which together

represent the full spectrum of prostate cancer phenotypes,

including normal epithelium (wild-type), low-grade PIN (Nkx3.1

and APT), high-grade PIN, and adenocarcinoma (APT-P, APC,

Myc, NP, Erg-P, and NP53), castration resistance (NP-AI), and

metastatic prostate cancer (NPB,NPK, and TRAMP; Figure S1A;

Table S2). To further increase the variability of the expression

profiles, we introduced a controlled set of exogenous pertur-

bations by in vivo administration of 13 small-molecule pertur-

bagens to each GEMM. Perturbagens were selected for their

clinical relevance and/or ability to modulate key prostate cancer

pathways, including hormone signaling (testosterone, calcitriol,

and enzalutamide); PI3 kinase activity (MK2206, LY294002,

and rapamycin); MAP kinase activity (PD035901); tyrosine kinase

activity (imatinib, dasatinib, and sorafenib); NFkB signaling (BAY
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Figure 1. Strategy for Genome-wide Cross-

Species Analyses of Prostate Cancer

Schematic representation of the overall strategy.

Step I: assembly of human and mouse prostate

cancer interactomes. Step II: genome-wide

computational analysis of conservation of tran-

scriptional regulon activity in the mouse and

human prostate cancer interactomes. Step III:

master regulator analysis for identification of

conserved master regulators and prediction of

synergy. Step IV: validation of candidate master

regulators using functional, molecular, and clinical

analyses.
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11-7082); JAK/STAT activity (WP1066); and chemotherapy

(docetaxel; Supplemental Experimental Procedures). Following

pilot studies to define appropriate doses and schedule (Figures

S1B–S1D), we adopted a universal treatment schedule of one

treatment per day for 5 days with dosage determined inde-

pendently for each perturbagen (Supplemental Experimental

Procedures).

The resulting data set comprises 384 gene expression profiles,

corresponding to the 13 GEMMs each treated with the 13 per-

turbagens or vehicles. t-SNE analysis revealed that the resulting

mouse data set represented an extensive range of expression

variability, as required for ARACNe (Figure 2). Specifically,

whereas expression profiles from the same GEMMs and

perturbagens clustered together, the diverse GEMMs and per-

turbagens provided independent and highly effective axes to

modulate gene expression variability.

ARACNe was run independently on the human and mouse

data sets using a conservative mutual information threshold

(p % 1.0 3 10�9, i.e., p % 0.05 Bonferroni corrected for all

candidate interactions). This resulted in highly robust regulatory

networks—in particular, the ‘‘human interactome’’ represented

249,896 interactions between 2,681 transcriptional regulators

and their inferred target genes (Figure 3A; Table S3), whereas

the ‘‘mouse interactome’’ represented 222,787 interactions for

2,072 transcriptional regulators (Figure 3A; Table S4).

Analysis of Genome-wide Conservation of
Transcriptional Regulatory Pathways
Because it has been previously established that target-by-target

analysis may not be optimal to evaluate cross-species interac-

tome conservation (e.g., Zhang et al., 2012), we developed a

quantitative metric to compare conservation of the human and

mouse interactomes. In particular, we developed a modification

of theMARINa algorithm that allows for single-sample analysis to

infer the differential activity of all 2,028 transcriptional regulators

represented in both interactomes. Analysis was performed on

1,009 expression profiles across the four human data sets (Table

S1) and the mouse data set (described herein) to determine

whether the inferred activities of each regulator were significantly

correlated (p % 0.05), indicating that the murine and human

regulatory programs were conserved (Supplemental Experi-

mental Procedures). The accuracy of this metric was evident

by comparing two equivalent same-species interactomes from

the human and mouse data sets (i.e., positive controls), in which

virtually all transcriptional regulators were conserved (>90%), in

contrast to randomized interactomes (i.e., negative controls),

which had virtually no conservation (Figure 3B).

Using thismetric, we found that 70%of the transcriptional reg-

ulators in the human and mouse prostate cancer interactomes

regulate statistically conserved programs (p % 0.05; Figure 3C;

Table S5). Notably, among the conserved transcriptional regula-

tors are many genes important in prostate cancer, such as AR,

ETS1, ETV4, ETV5, STAT3, MYC, BRCA1, and NKX3.1 (Shen

and Abate-Shen, 2010; Figure 3A; Table S5). In particular, AR

displayed extensive correlation of its transcriptional activity

between the human and mouse interactomes (Figure 3D),

consistent with its known role as a key regulator of prostate

development and tumorigenesis (Ryan and Tindall, 2011; Shen

and Abate-Shen, 2010).

Cross-Species Computational Analysis Identifies
Synergistic Master Regulators of Malignant Prostate
Cancer
To identify master regulators (MRs) of malignant prostate cancer

(Figure 4), we used the MARINa algorithm, which identifies

candidate MRs based on the concerted differential expression

Figure 2. Heterogeneity of Human and Mouse Data Sets Used for Interactome Assembly
t-Distributed Stochastic Neighbor Embedding (t-SNE) analysis of human and mouse data sets used to assemble the prostate cancer interactomes. (Left) t-SNE

analysis of the Taylor data set relative to Gleason score (GS). (Middle) Schematic representation of GEMMs used to assembly the mouse prostate cancer

interactome. t-SNE analysis showing relative distribution of the GEMMs. (Right) Schematic diagram depicting perturbagens used to treat the GEMMs. t-SNE

analysis showing the relative distribution of perturbagens for a representative GEMM (i.e., the NP mice).

See also Figure S1 and Tables S1 and S2.
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of their ARACNe-inferred targets (i.e., their inferred differential

activity, DA). Specifically, ‘‘activated’’ MRs have positively regu-

lated and repressed targets significantly enriched among over-

and underexpressed genes, respectively, while ‘‘repressed’’

MRs have the converse. We interrogated the human prostate

cancer interactome using a gene signature representing prostate

cancermalignancy derived from the Taylor data set as described

elsewhere (Aytes et al., 2013), which compares aggressive

prostate tumors (Gleason score R 8 with rapid biochemical

recurrence; n = 10) to indolent ones (Gleason score 6 tumors

with no biochemical recurrence; n = 39). This analysis identified

175 candidate MRs, including 49 activated and 126 repressed

(p % 0.05; Figure 4A; Table S6).

To investigate the robustness of these MRs, we performed

MARINa using an independent malignancy signature derived

from the Balk data set (Table S1; Stanbrough et al., 2006), which

Figure 3. Genome-wide Conservation Ana-

lyses of the Human and Mouse Prostate

Cancer Interactomes

(A) ARACNe subnetworks from the human and

mouse prostate cancer interactomes highlighting

selected conserved transcriptional regulators. The

scaled size of the transcriptional regulator nodes

(colored circles) indicates the degree of conser-

vation while the relative distance between them

approximates the strength of their association.

(B and C) Histograms (density plots) showing

conservation of transcriptional regulator activity

between the human and mouse prostate can-

cer interactomes. (B) Distribution of correlation

coefficients of activity profiles of transcriptional

regulators for randomized interactomes (negative

control; purple line) and the positive control inter-

actomes for human (yellow) and mouse (green;

Supplemental Experimental Procedures). (C) Dis-

tribution of Z scores for conservation of activity

profiles between the human and mouse inter-

actomes at p % 0.05.

(D) Comparison of the androgen receptor (AR)

activity levels in each sample from Taylor et al.

(top) and the mouse data set (bottom) showing the

Spearman correlation coefficient.

See also Tables S3, S4, and S5.

compares castrate-resistant (n = 29) with

hormone-naive disease (n = 22). TheMRs

identified from the Balk malignancy

signature (Table S6) significantly overlap-

ped with those identified from the Taylor

malignancy signature (36 in common;

Fisher exact test p < 0.0001; Table S6).

Furthermore, MARINa analyses of 15

independent interactomes revealed that

the MRs inferred from two independent

prostate cancer interactomes signifi-

cantly overlapped with those inferred

from the Taylor prostate cancer interac-

tome (p < 7 3 10�9 and p < 8 3 10�20,

Fisher exact test), whereas the overlap

of MRs inferred from 13 nonprostate

cancer-specific interactomes were orders of magnitude less sig-

nificant (Supplemental Experimental Procedures). Thus, MRs

of human prostate cancer malignancy are consistent across

independent prostate cancer malignancy signatures, but depen-

dent on a context-specific prostate cancer interactome.

To identify corresponding mouse MRs of malignancy, we per-

formed MARINa on four independent GEMM signatures, which

embody the diverse range of prostate cancer phenotypes repre-

sented among the GEMMs (Figure S2A; Table S2; Supplemental

Experimental Procedures). Meta-analysis of the resulting MRs

from these independent GEMM signatures led to identification

of 229 candidate mouse MRs, including 110 activated and 119

repressed MRs (p % 0.001; Figure 4A; Table S7).

The independent list of human and mouse MRs were then in-

tegrated to produce a ranked list of 20 conservedMRs, including

seven activated and 13 repressed (joint p value: p % 0.0074 by
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Stouffer’s method; Figures 4A and 4B; Figure S2B). Notably,

these conservedMRsweremore likely to be associated with dis-

ease outcome than the nonconserved ones, as assessed by a

univariate COX proportional hazard regression model (p %

0.05), and were also more likely to be differentially expressed

in aggressive prostate tumors (Figures 4A and 4C; Supplemental

Experimental Procedures).

We focused our subsequent analysis on the activated

conserved MRs, each of which has been associated with can-

cer-related biological processes: CHAF1A (chromatin activity);

Figure 4. Conserved Master Regulators of Malignant Prostate Cancer

(A) (left) Master regulators (MRs) were identified using human or mouse interactomes malignancy signatures; differential activity (DA) is based on enrichment of

activated (red) and repressed (blue) targets. DE, differential expression. (Right) Venn diagram showing integration of independent lists of activated MRs from

human (49) and mouse (110) with an overlap of seven conserved MRs. Clinical features of all human MRs versus the conserved MRs showing the percentage

associated with disease outcome (using a COX proportional hazard model) and the percentage that are differentially expressed in advanced prostate cancer

(from Oncomine).

(B) Conserved activated MRs are shown for the human (left) and mouse (right) malignancy signatures, depicting their positive (activated; red bars) and negative

(repressed; blue bars) targets. The ranks of differential activity (DA) and differential expression (DE) are shown by the shaded boxes; the numbers indicate the rank

of the DE in the malignancy signature.

(C) Summary of conservedMRs showing joint p value from human andmouseMARINa analysis, calculated using Stouffer’s method; p value for COX proportional

hazard regression model applied to mRNA expression levels and predicted MR activity; and average p values for differential expression of MRs in metastatic

versus nonmetastatic primary tumors.

(D) Computational synergy analysis depicting FOXM1 and CENPF regulons from the human (left) and mouse (right) interactomes showing shared and nonshared

targets. Red corresponds to overexpressed targets and blue to underexpressed targets; the p value for the enrichment of shared targets is shown.

See also Figure S2 and Tables S6 and S7.
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TRIB3 (regulation of cell signaling in transcriptional control);

FOXM1 (cell cycle progression); CENPF (mitosis); PSRC1

(growth control); TSFM (translational elongation); and ASF1B

(regulation of nucleosome assembly; Figure 4B). We further

prioritized these MRs by computationally evaluating their poten-

tial synergistic interactions. In particular, any pair of MRs was

considered ‘‘synergistic’’ if their coregulated ARACNe-inferred

targets were significantly enriched in the malignancy signature

relative to their individual targets (p % 0.001; Carro et al.,

2010; Lefebvre et al., 2010). Among all possible pairs of

conserved activated MRs, the only pair that was statistically

significant was FOXM1 and CENPF (Figure 4D). Notably, both

FOXM1 and CENPF are expressed in aggressive prostate

tumors and predicted to be associated with disease outcome

(Figure 4C; Supplemental Experimental Procedures). Strikingly,

among all activated (rather than conserved) human MRs

identified, only FOXM1 and CENPF were predicted to be both

synergistic and of potential clinical relevance (Supplemental

Experimental Procedures). Thus, cross-species analyses of

conserved MRs identified a single MR synergy pair of potential

clinical relevance.

Cosilencing FOXM1 and CENPF Synergistically
Abrogates Prostate Tumor Growth
To evaluate their individual and potential synergistic functions in

prostate cancer, we silenced FOXM1 and/or CENPF individually

or together in four human prostate cell lines, DU145, PC3,

LNCaP, and 22Rv1, which have differing tumorigenic properties

and responses to androgen signaling (Figure 5A; Figure S3A).

Notably, each of these cell lines express high levels of FOXM1

and CENPF mRNA; however, LNCaP does not have detectable

CENPF protein (Figure 5B; Figures S3B–S3E), and therefore

provides an excellent negative control for synergy analysis. To

silence FOXM1 and/or CENPF, we engineered doxycycline-

inducible lentiviral vectors expressing shRNAs for FOXM1 or

CENPF or a control shRNA, as well as an RFP or GFP reporter

(Figure 5A; Supplemental Experimental Procedures); analyses

were done using two independent shRNA to minimize concerns

about off-target effects (Figure S3). We distinguish ‘‘synergistic’’

versus ‘‘additive’’ effects of FOXM1 and CENPF by first extrap-

olating their ‘‘predicted additivity’’ based on their individual

silencing using a log-linear model, and then comparing this pre-

dicted value to the ‘‘actual’’ (observed) effect following their co-

silencing using a one-sample t test; if the ‘‘actual’’ is statistically

greater than the ‘‘predicted additive,’’ we conclude that FOXM1

and CENPF are synergistic rather than additive (Supplemental

Experimental Procedures).

Whereas individual silencing of FOXM1, and, to a lesser

extent, CENPF, resulted in reduced cellular proliferation, the

actual reduction following their cosilencing was statistically

greater (p < 0.01; one-sample t test) than the predicted additive,

and is therefore synergistic for each cell line that expresses both

FOXM1 and CENPF proteins (Figure S3F). Similarly, with respect

to colony formation, whereas individual silencing of FOXM1

or CENPF reduced the number of colonies, their cosilencing

resulted in nearly complete abrogation of colony formation in

each cell line expressing both FOXM1 and CENPF proteins

(p < 0.001; one-sample t test; Figures 5C and 5D; Figures S3G

and S3H). Importantly, cosilencing of FOXM1 and CENPF was

not associated with reduced viability, apoptosis, or further cell

cycle arrest relative to their individual silencing (Figures S3I–

S3K), suggesting that their observed synergy was not simply

due to induction of cell death or was secondary to cell cycle

arrest.

To investigate their consequences for tumor growth in vivo, we

engrafted DU145 cells expressing silencing vectors for FOXM1

and/orCENPF (or controls) into immunodeficient mice andmoni-

tored tumor growth (Figures 5E–5H). Consistent with the cell cul-

ture studies, individual silencing of FOXM1 or CENPF resulted

in a modest but statistically significant reduction in tumor growth

(2-fold, p% 0.002 and 1.5-fold, p% 0.002, respectively), as well

as tumor weight (2.3-fold, p % 0.007, and 1.6 fold, p % 0.01,

respectively) (Figures 5F and 5G). However, cosilencing of

FOXM1 and CENPF resulted in a complete abrogation of tumor

growth (10.2-fold reduced, p%0.000013) and a profound reduc-

tion in tumor weight (12.9-fold, p % 0.000011; Figures 5F and

5G). Notably, the actual inhibition of tumor growth following

cosilencing of FOXM1 and CENPF was significantly greater

than the predicted additive inhibition (3.3-fold difference, p %

0.00026; one sample t test; Figure 5F), supporting the conclusion

that FOXM1 and CENPF synergistically regulate tumor growth

in vivo.

To further evaluate the synergistic activity of FOXM1 and

CENPF for tumor growth, we developed an in vivo competition

assay (Figures 5I–5K). Specifically, we infected DU145 cells

with silencing vectors expressing an FOXM1 shRNA and an

RFP reporter (red) or a CENPF shRNA and an GFP reporter

(green), or both lentiviruses (yellow; Figure 5I). As negative con-

trols, we infected DU145 cells with control vectors lacking the

FOXM1 or CENPF shRNA but expressing the fluorescent re-

porters. We then implanted equal numbers of viable red, green,

or yellow cells from the experimental or control groups into

immunodeficient mice. Following 1 month of growth in vivo,

the resulting tumors were isolated and the percentage of red,

green, and yellow cells were quantified by fluorescence-acti-

vated cell sorting.

Tumors derived from control cells (n = 4) were comprised of

equivalent numbers of red (34% ± 0.6%), green (34% ± 2.7%),

and yellow (33% ± 1.2%) cells, indicating that the respective len-

tiviral vectors offer no selective growth advantage (p % 0.614;

Hotelling’s one-sample T-squared test; Figures 5J and 5K). In

striking contrast, tumors derived from the experimental cells

(n = 7) were comprised primarily of green CENPF-silenced cells

(57% ± 3.5%) and red FOXM1-silenced cells (41% ± 2.6%),

whereas there were virtually no yellow cosilenced cells (2.0% ±

0.3%; Figures 5J and 5K). This profound selection against cells

cosilenced for FOXM1 and CENPF was highly significant (p %

0.0001; Hotelling’s one-sample T-squared test; Figure 5K),

which further supports the conclusion that FOXM1 and CENPF

synergistically regulate tumor growth in vivo.

FOXM1 and CENPF Coregulate Gene Expression and
Control Tumorigenic Signaling Pathways in Prostate
Cancer
To investigate the mechanism(s) underlying the observed activ-

ities of FOXM1 and CENPF, we assessed the consequences

of their individual versus cosilencing for expression of their

ARACNe-inferred common (shared) target genes (Table S3).
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Figure 5. Functional Validation of FOXM1 and CENPF

(A) Human prostate cancer cells were infected with lentiviral silencing vectors expressing shRNA for FOXM1 and/or CENPF (or control) and either an RFP (red) or

GFP (green) reporter. Unless otherwise indicated, analyses were done using two independent shRNAs for each gene and in four independent prostate cancer cell

lines (DU145, PC3, LNCaP, 22Rv1); in most cases data using shRNA1 are shown.

(B) Western blot analysis showing expression of FOXM1 or CENPF proteins in DU145 cells with the indicated shRNAs.

(C and D) Colony formation assay. (C) Representative analyses of DU145 cells with an shRNA for FOXM1 and/or CENPF (or the control) with colonies visualized

using crystal violet. (D) Quantification of colonies using ImageJ.

(E–H) Analysis of tumor growth in vivo. (E) DU145 cells expressing an shRNA for FOXM1 and/orCENPF, or the control, were implanted subcutaneously intomouse

hosts. Beginning on day 7, mice were administered doxycycline to induce shRNA expression and tumor growth was monitored for 1 month. (F) Tumor growth

curves for the indicated shRNA. The dashed line shows the predicted additive effect of cosilencing FOXM1 and/or CENPF. (G) Tumor weights at the time of

sacrifice. (H) Representative tumors. In (D), (F), and (G) the predicted additive was estimated based on the consequences of individual silencing of FOXM1 and

CENPF using a log-linear model; the p value, calculated using a one-sample t test, indicates the significance between the predicted additive versus the actual

(observed) consequences of cosilencing FOXM1 and CENPF.

(I–K) In vivo competition assay. (I) Equal numbers of DU145 cells expressing the control shRNA (control cells), or the experimental shRNA for FOXM1 and/or

CENPF (experimental cells) as well as RFP or GFP were implanted into mouse hosts. Beginning on day 7, mice were administered doxycycline to induce shRNA

expression and tumor growth was monitored for 1 month, then tumors were collected and fluorescence-activated cell sorting was performed to quantify the total

number of red, green, or yellow cells in individual tumors for control and experimental groups. (J) Representative fluorescence-activated cell sorting plots showing

the percentage of red, green, or yellow cells relative to the total number of fluorescent cells. (K) (top) Graphs show the average percent of red, green, and yellow

cells in the control tumors (n = 4) or experimental tumors (n = 7); p values correspond to a Hotelling’s one-sample t test. (Bottom) Representative tumors. Error

bars represent ± SD.

See also Figure S3.
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Although target gene expression was somewhat reduced by

their individual silencing, cosilencing of FOXM1 and CENPF pro-

duced a significantly greater reduction for themajority of targets,

consistent with coregulation of target gene expression by

FOXM1 and CENPF (Figure 6A; Figure S4). Furthermore, using

chromatin immunoprecipitation (ChIP) followed by quantitative

Figure 6. FOXM1 and CENPF Synergistically Regulate Gene Expression and Control Tumorigenic Signaling Pathways in Prostate Cancer

(A) Validation of ARACNe-inferred shared targets of FOXM1 and CENPF. The graphs show relative mRNA expression levels, normalized to GADPH, for the

indicated genes in the cell lines shown following individual or co-silencing of FOXM1 and CENPF. The p values (indicated by *) show the significance of the

predicted additive effect versus actual effect on gene expression calculated using a one-sample t test (*p < 0.01; **p < 0.001).

(B) Chromatin immunoprecipitation followed by qPCR of genomic binding sites of FOXM1. Cells were infected with a lentivirus expressing V5-tagged FOXM1 as

well as an shRNA forCENPF (or a control) and ChIP was done using an anti-V5 antibody. Data are expressed as fold enrichment of FOXM1 binding normalized to

input.

(C) Subcellular localization of FOXM1 and CENPF in prostate cancer cells after silencing. Shown are microphotographs of immunofluorescence staining for

FOXM1 or CENPF in the control or silenced cells as indicated. Arrows indicate subcellular localization. Scale bars represent 1 mm.

(D and E) Consequences of silencing FOXM1 and/or CENPF for gene expression profiling in DU145 cells. (D) Heatmaps of differentially expressed genes. Colors

correspond to levels of differential expression; red corresponds to overexpression and blue to under-expression. Selected genes differentially expressed

following cosilencing are indicated. (E) Heatmaps showing leading edge genes of biological pathways enriched by cosilencing of FOXM1 andCENPF as assessed

by gene set enrichment analysis.

(F) Western blot analyses showing expression of the indicated markers of the PI3-kinase andMAP kinase signaling pathways in DU145 and PC3 prostate cancer

cells silenced for FOXM1 and/or CENPF, as indicated. Error bars represent ± SD.

See also Figure S4 and Tables S8 and S9.
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PCR, we found that binding by FOXM1 to its known genomic

sites on shared target genes was reduced following silencing

of CENPF (Figure 6B), suggesting that CENPF is required for

appropriate genomic binding by FOXM1. Interestingly, although

we did not observe a direct protein-protein interaction of FOXM1

and CENPF in co-immunoprecipitation assays (data not shown),

we observed that FOXM1 and CENPF were colocalized in the

nucleus of prostate cancer cells and that their subcellular coloc-

alization was mutually dependent (Figure 6C). In particular,

silencing of CENPF resulted in the redistribution of FOXM1 to

the cytoplasm as well the nucleus, and conversely silencing of

FOXM1 resulted in the accumulation of CENPF at the nuclear pe-

riphery (Figure 6C). Notably, subcellular colocalization of FOXM1

and CENPF was also observed in human prostate tumors

and was associated with disease outcome (see below). Taken

together, our findings suggest that FOXM1 and CENPF coregu-

late expression of shared target genes in prostate cancer cells, at

least in part, through their subcellular colocalization.

To elucidate molecular pathways underlying the synergistic

interaction of FOXM1 andCENPF for tumor growth, we analyzed

expression profiles from prostate cancer cells in which they were

individually silenced or cosilenced (Figure 6D; Table S8). The

differentially expressed genes following individual silencing of

FOXM1 or CENPF included a majority of their ARACNe-inferred

targets (p = 0.0028 for enrichment of FOXM1 targets; p% 0.001

for CENPF targets), further confirming the accuracy of the

ARACNe analysis (Table S8). Inspection of these differentially

expressed genes, as well as gene set enrichment analysis of en-

riched biological pathways confirmed the known individual func-

tions of FOXM1 and CENPF as regulators of cellular proliferation

and/or mitosis (Tables S8 and S9).

However, cosilencing of FOXM1 andCENPF revealed an addi-

tional repertoire of significantly differentially expressed genes

and enriched biological pathways (Figures 6D and 6E; Tables

S8 and S9), including several pathways associated with tumori-

genesis: ‘‘cell cycle’’ (normalized enrichment score [NES] 1.32;

p % 0.001), ‘‘stress pathway’’ (NES 1.58; p % 0.01), ‘‘regulation

of insulin-like growth factor’’ (NES 1.89; p% 0.001), ‘‘signaling by

NGF’’ (NES 1.25; p% 0.001), ‘‘metabolism of amino acids’’ (NES

1.25; p % 0.01), ‘‘PI3-Akt signaling’’ (NES 1.89; p % 0.001),

‘‘MAP kinase pathway’’ (NES 1.34; p % 0.008), ‘‘telomere main-

tenance’’ (NES 1.35; p % 0.01), and ‘‘cell adhesion molecules’’

(NES 1.32; p % 0.001).

Notable was the enrichment of PI3-kinase and MAP kinase

signaling pathways following cosilencing of FOXM1 and CENPF

(Figure 6E; Table S9) because these constitute established hall-

marks of aggressive prostate cancer (Aytes et al., 2013; Taylor

et al., 2010). As evident by western blot analysis, both pathways

are completely abrogated following cosilencing of FOXM1 and

CENPF (Figure 6F), suggesting that therapeutic targeting of

FOXM1 and CENPF in prostate cancer cells may be effective

for inactivation of these signaling pathways.

Co-Expression of FOXM1 and CENPF Is a Prognostic
Indicator for Human Prostate Cancer
We next asked whether expression of FOXM1 and/or CENPF is

associated with cancer progression and/or outcome by analysis

of tissue microarrays (TMAs; Figure 7A; Table S1). In particular,

we analyzed a high-density TMA containing primary tumors

froma large cohort of patients (n = 916) that had undergone pros-

tatectomy at Memorial Sloan-Kettering Cancer Center (MSKCC)

from 1985 to 2003 (Donovan et al., 2008). These cases have

extensive clinical follow-up data for up to 20 years, including

time to biochemical recurrence, prostate cancer-specific sur-

vival, and time tometastasis (Table S1).We also evaluated a sec-

ond TMA from the rapid autopsy program at the University of

Michigan, which contains prostate cancer metastases (n = 60),

including 6 lung, 11 liver, 22 lymph node, and 14 other sites

(Shah et al., 2004).

Analysis of the MSKCC prostatectomy TMA revealed that

FOXM1 and CENPF were overexpressed in 33% and 37% of

all cases, respectively, (n = 821 informative cases) with a trend

toward increased expression in tumors with higher Gleason

scores (Figure 7A; Figure S5A). Furthermore, analysis of the

Michigan metastasis TMA revealed that FOXM1 and CENPF

were expressed in most of the prostate cancer metastases

(88% and 90%, respectively; n = 53 informative cases; Fig-

ure 7A). Moreover, FOXM1 and CENPF were frequently co-

expressed and colocalized in the nucleus in both the MSKCC

prostatectomy TMA (Spearman’s Rho = 0.57, p % 2 3 10�16)

and the Michigan metastasis TMA (Spearman’s Rho = 0.43,

p % 1 3 10�3; Figure 7A). Additionally, at the mRNA level,

overexpression of FOXM1 and CENPF was well correlated in

advanced prostate cancer and metastases from independent

cohorts of human prostate cancer (Figure S5B).

To determine whether expression of FOXM1 and/or CENPF is

associated with disease outcome, we first defined four groups of

patients from the MSKCC TMA based on their expression levels:

(1) low/normal expression of both FOXM1 and CENPF (n = 418);

(2) high expression of FOXM1 and low/normal expression of

CENPF (n = 97); (3) high expression of CENPF and low/normal

expression of FOXM1 (n = 133); and (4) high expression of

both FOXM1 and CENPF (n = 173). Kaplan-Meier survival anal-

ysis revealed that patients having elevated expression of both

FOXM1 and CENPF had the worst outcome for three indepen-

dent clinical endpoints, namely, time to biochemical-free recur-

rence (p % 4.4 3 10�6), death due to prostate cancer (p %

5.93 10�9), and time to metastasis (p% 1.03 10�16; Figure 7B).

Notably, subcellular colocalization of FOXM1 and CENPF in

prostate tumors was also associated with the worst outcome

for all three independent clinical endpoints (Figure S5A). In

contrast, elevated expression of only FOXM1 or CENPF was

either not significant or marginally significant for biochemical

recurrence and prostate-specific survival (p % 0.053 and p %

0.011 for FOXM1, respectively; p % 0.078 and p % 0.402 for

CENPF, respectively), and was 10 to 13 orders of magnitude

less significant for time to metastasis (p % 0.001 for FOXM1

and p % 3.1 3 10�6 for CENPF; Figure 7B).

We independently corroborated the association of FOXM1

and CENPF with disease outcome in two independent human

prostate cancer data sets that had not been used for training

purposes elsewhere in this study; namely, the Glinsky data set,

in which biochemical recurrence is the clinical endpoint (Glinsky

et al., 2004), and the Sboner data set, in which the clinical

endpoint is prostate cancer-specific overall survival (Sboner

et al., 2010; Table S1). Using these independent cohorts, we

evaluated the mRNA expression levels of FOXM1 and CENPF

as well as their MARINa-inferred transcriptional activity
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(Supplemental Experimental Procedures; Figures 7C and S5C).

We then performed Kaplan-Meier survival analysis comparing

four patient groups: (1) those with low inferred activity or expres-

sion for FOXM1 and CENPF; (2) those with high inferred activity

or expression only for FOXM1; (3) those with high inferred activity

or expression only for CENPF; and (4) those with high inferred

activity or expression for both FOXM1 and CENPF. Similar to

our analysis of the TMA, patients with high inferred activity or

mRNA expression for both CENPF and FOXM1 were associated

with the worst outcome in both cohorts, as measured by

biochemical recurrence (p % 0.000065) and prostate cancer-

specific survival (p % 0.000040; (Figures 7C and S5C). Notably,

these findings reveal that their MARINa-inferred activities are

well correlated with the actual protein expression of FOXM1

and CENPF, and further demonstrate the striking association

of their co-expression/co-activity with poor disease outcome.

Finally, association of FOXM1 and CENPF protein expres-

sion with disease outcome using C-statistics revealed its robust

prognostic value for disease-specific survival (C = 0.71; CI 0.59–

0.84, p % 0.00024), as well as time to metastasis (C = 0.77;

Figure 7. Clinical Validation of FOXM1 and CENPF in Human Prostate Cancer

(A) Analysis of tissue microarrays (TMAs). Representative images from the MSKCC prostatectomy TMA and the Michigan metastasis TMA showing FOXM1 and

CENPF protein expression; Spearman correlation of their co-expression with p value is shown. Scale bars represent 10 mm (lower primary tumor) or 100 mm

(all others).

(B) Kaplan-Meier survival analysis based on protein expression levels of FOXM1 and CENPF in MSKCC prostatectomy TMA with respect to time to biochemical

recurrence, time to prostate cancer-specific death, or time to metastatic progression.

(C) Kaplan-Meier survival analysis based on the ARACNe-inferred activity levels of FOXM1 and CENPF (Supplemental Experimental Procedures) in two inde-

pendent human prostate cancer data sets using biochemical recurrence-free survival (Glinsky et al., 2004) or prostate cancer-specific survival (Sboner et al.,

2010) as disease endpoints. In (B) and (C), the p values correspond to a log-rank test and indicate the statistical significance of the association with outcome for

each indicated branch compared to control (i.e., patients with low activity levels of both FOXM1 and CENPF, blue line curve).

(D) C-statistics analysis, based on the protein levels of FOXM1 and CENPF from the MSKCC TMA, using death due to prostate cancer and time to metastasis as

evaluation endpoints.

See also Figure S5.

CCELL 1862

Cancer Cell

Genome-wide Regulatory Networks of Prostate Cancer

Cancer Cell 25, 1–14, May 12, 2014 ª2014 Elsevier Inc. 11

Please cite this article in press as: Aytes et al., Cross-Species Regulatory Network Analysis Identifies a Synergistic Interaction between FOXM1 and
CENPF that Drives Prostate Cancer Malignancy, Cancer Cell (2014), http://dx.doi.org/10.1016/j.ccr.2014.03.017

92



CI 0.71–0.83, p % 3.0 3 10�19; Figure 7D). Notably, co-expres-

sion of FOXM1 and CENPF proteins dramatically improves

prognosis over Gleason score alone for both disease-specific

survival (C = 0.86; CI 0.80–0.93, p % 1.0 3 10�30; p value for

improvement p % 0.00020) and time to metastasis (C = 0.86;

CI 0.81–0.89, p % 6.5 3 10�58; p value for improvement, p %

5.3 3 10�13; Figure 7D). Taken together, these analyses

of independent clinical cohorts and using distinct statistical

models demonstrate that co-expression of FOXM1 and CENPF

is a robust prognostic indicator of poor disease outcome and

metastasis.

DISCUSSION

Recent advances in whole-genome analyses are providing an

increasingly high-resolution view of the multitude of genetic,

genomic, and epigenetic alterations associated with cancer phe-

notypes. Given the staggering number of potential interactions,

identification of the true causal drivers and essential synergistic

interactions represents a considerable challenge. In the current

study, we have demonstrated that cross-species interroga-

tion of genome-wide context-specific regulatory networks can

address this challenge by dramatically winnowing the candidate

gene interactions that implement the regulatory programs under-

lying cancer phenotypes. In particular, we have introduced a

comprehensive systems approach to interrogate complemen-

tary regulatory networks for human and mouse prostate cancer

to identify conserved causal regulators and to elucidate syner-

gistic interactions among them. These studies have led to the

identification of FOXM1 and CENPF as synergistic master regu-

lators of prostate cancer malignancy and robust prognostic bio-

markers of aggressive prostate cancer. We propose that this

overall approach for genome-wide cross-species analysis will

be generally applicable for identifying synergistic interactions

that drive physiologic and pathologic phenotypes in cancer

and other diseases.

The genome-wide assembly and cross-species interrogation

of human andmouse prostate cancer regulatory networks repre-

sents a major conceptual advance. A critical requirement was

the generation of a mouse prostate cancer interactome from a

data set of appropriate size and expression heterogeneity. We

incorporated the diversity afforded by genetically and pheno-

typically distinct mouse models of prostate cancer obtained

through a community effort (see Supplemental Experimental

Procedures), in combination with exogenous perturbations

administered to each mouse model. This strategy has led to

the successful construction of a genome-wide, context-specific

mouse interactome for the study of prostate cancer, and is

generalizable for the generation of interactomes for a wide range

of physiologic and pathologic phenotypes.

A second critical requirement was the development of

an informative algorithm to determine whether the human and

mouse prostate cancer interactomes represented conserved

regulatory programs, thus enabling accurate and robust

cross-species integrative analysis. Toward this end, we intro-

duced a metric for quantitative assessment of conservation of

regulatory networks, which revealed that the large majority of

regulatory programs represented by these networks are highly

conserved (>70%). Although the current study is focused on

prostate cancer interactomes assembled using ARACNe, this

general approach for evaluating conservation can be used for

cross-species analyses of regulatory networks for other cancers

or other diseases and can be readily adapted for analyses

of networks inferred using alternative algorithms, such as those

based on the Context Likelihood of Relatedness and Bayesian-

networks algorithms (Akavia et al., 2010; Faith et al., 2007).

Indeed, we envision that the ability to quantitatively evaluate

conservation of cross-species regulatory programs will be

broadly applicable for other physiological and pathological

comparisons, and particularly beneficial for accurate integra-

tion of preclinical findings from genetically engineered mice to

human clinical trials.

A third critical requirement for the success of our approach

was our ability to effectively mine these cross-species regulatory

networks to identify conserved master regulators of cancer

malignancy and to identify their synergistic interactions. The

MARINa algorithm used for these analyses defines ‘‘master reg-

ulators’’ as genes that most significantly regulate the transcrip-

tional program associated with a particular phenotype (in this

case, prostate cancer malignancy), and hence are rate-limiting

drivers of the phenotype (Carro et al., 2010; Lefebvre et al.,

2010). Notably, MARINa also provides an effective computa-

tional tool for analyses of synergistic interactions among master

regulators (Carro et al., 2010); indeed, our unbiased interrogation

of �2,000 transcriptional regulators represented in the interac-

tomes led to identification of a single synergistic pair, namely

FOXM1 and CENPF. The power of this approach suggests that

it may be of general value in dissecting polygenic dependencies

in cancer and other diseases.

Although both FOXM1 and CENPF have been implicated in

various cancers, our study has uncovered their unexpected

synergistic interaction. FOXM1 encodes a forkhead domain

transcription factor that is frequently overexpressed in many

different types of cancer, including prostate (Alvarez-Fernandez

and Medema, 2013; Halasi and Gartel, 2013a; Kalin et al., 2011;

Koo et al., 2012). Many previous studies have established a role

for FOXM1 in regulation of cellular proliferation, DNA damage,

genomic stability, drug resistance, and metastasis, and have

shown that it interacts with other key regulators such as b-cate-

nin and MYB (Lefebvre et al., 2010; Zhang et al., 2011). In pros-

tate cancer, gain- or loss-of-function of FOXM1 in vivo have been

shown to elicit modest effects on tumor growth (Cai et al., 2013;

Kalin et al., 2006).

CENPF (also known as mitosin or LEK1 in mouse), a known

target of FOXM1, has also been implicated in various cancers,

although not previously in prostate, and in some cases has

been shown to undergo gene amplification and to be associated

with disease outcome (Ma et al., 2006; Varis et al., 2006). How-

ever, the actual functional role of CENPF has been more elusive

and difficult to reconcile. In particular, whereas CENPF is named

for its association with the centromere-kinetochore protein com-

plex, such association is transient and, in fact, CENPF has other

functions, including regulation of mitosis and cellular prolifera-

tion (Bomont et al., 2005; Feng et al., 2006; Holt et al., 2005),

which are mediated in part by protein interactions (Ma et al.,

2006; Varis et al., 2006).

Thus, although the individual functions of FOXM1 and CENPF

in cancer had been well studied, their synergistic interaction

CCELL 1862

Cancer Cell

Genome-wide Regulatory Networks of Prostate Cancer

12 Cancer Cell 25, 1–14, May 12, 2014 ª2014 Elsevier Inc.

Please cite this article in press as: Aytes et al., Cross-Species Regulatory Network Analysis Identifies a Synergistic Interaction between FOXM1 and
CENPF that Drives Prostate Cancer Malignancy, Cancer Cell (2014), http://dx.doi.org/10.1016/j.ccr.2014.03.017

93

califano
Cross-Out

califano
Inserted Text
to the assembly of

califano
Cross-Out

califano
Inserted Text
representing

califano
Cross-Out

califano
Inserted Text
analyses

califano
Cross-Out

califano
Inserted Text
infers

califano
Cross-Out

califano
Inserted Text
(Lefebvre et al. 2010)

califano
Inserted Text
in sharp contrast to their negligible individual activity



could not have been anticipated from previous analyses. Cumu-

latively, our findings suggest that co-expression of FOXM1 and

CENPF in prostate cancer leads to coregulation of transcrip-

tional programs, which ultimately result in activation of the key

signaling pathways associated with prostate cancermalignancy,

including the PI3K and MAPK signaling pathways. Because

FOXM1 and CENPF can each be targeted pharmacologically

(Halasi and Gartel, 2013b; Pan and Yeung, 2005; Radhakrishnan

et al., 2006), their inhibition may provide an effective means

of treating advanced prostate cancer; indeed, therapeutic tar-

geting of FOXM1 and CENPF may help overcome the complex

feedback mechanisms that have hindered therapeutic targeting

of PI3K and MAPK signaling pathways.

Furthermore, we envision that by using alternative gene

signatures that represent other prostate cancer phenotypes,

genome-wide cross-species analysis of master regulators and

their potential synergistic interactions may help to define

molecular subtypes of prostate cancer, which have thus far

been elusive. More broadly, our general approach to elucidate

conserved and functionally relevant gene interactions can be

applied tomany tumor contexts as well as other human diseases

for which appropriate model systems are available.

EXPERIMENTAL PROCEDURES

Assembly of Interactomes and Master Regulator Analyses

Expression profile data sets for human prostate cancer are described in Table

S1. GEMMs are described in Table S2 and their representative histopathology

shown in Figure S1A. A description of perturbagen treatments is provided in

the Supplemental Experimental Procedures. Human and mouse interactomes

were assembled using the ARACNe algorithm (Margolin et al., 2006a). Details

of the resulting human and mouse networks are provided in Tables S3 and S4,

respectively. Analysis of cross-species network conservation was done using

a modification of the MARINa algorithm described in the Supplemental Exper-

imental Procedures. Master regulator analysis and computational synergy

analysis were performed using MARINa (Carro et al., 2010; Lefebvre et al.,

2010). Master regulators for the human and mouse interactomes are provided

in Tables S6 and S7, respectively.

Functional Validation

Gene silencing of FOXM1 and CENPF as well as forced expression of FOXM1

were done using lentiviral shRNAs or expression vectors (Open Biosystems

and CCSB Human ORFeome Library, respectively). Human cancer cell lines

used for functional studies were obtained from ATCC. All experiments using

animals were performed according to protocols approved by the Institutional

Animal Care and Use Committee at Columbia University Medical Center.

Tissue Microarray Analyses

All studies involving human subjects were approved by the Institutional Review

Board of MSKCC or University of Michigan. TMAs were constructed with

approval from the Human Biospecimen Utilization Committee and Institutional

Review Board; consent was obtained from all patients, as required. Analysis of

protein expression of FOXM1 and CENPF was performed using a high-density

TMA (Donovan et al., 2008) and ametastasis TMA (Shah et al., 2004). Available

clinicopathological features of these TMAs are summarized in Table S1.

Statistical Methods

Statistical analysis was performed with survcomp package using R v2.14.0.

Cox proportional hazard model was estimated with the surv and coxph

functions. Kaplan-Meier survival analysis was performed using surv, survfit,

and survdiff functions. Concordance indexes (c-index) were estimated

and compared using coxp and concordance.index (counting ties) and

cindex.comp functions. Details of all statistical analyses and all computational

procedures are provided in the Supplemental Experimental Procedures. An

executable SWEAVE document and R data objects are deposited in Figshare

at http://dx.doi.org/10.6084/m9.figshare.928353.
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SUMMARY

Genome-wide identification of the mechanism of ac-
tion (MoA) of small-molecule compounds character-
izing their targets, effectors, and activity modulators
represents a highly relevant yet elusive goal, with crit-
ical implications for assessment of compound effi-
cacy and toxicity. Current approaches are labor
intensive andmostly limited to elucidating high-affin-
ity binding target proteins. We introduce a regulatory
network-based approach that elucidates genome-
wide MoA proteins based on the assessment of the
global dysregulation of their molecular interactions
followingcompoundperturbation. Analysis of cellular
perturbation profiles identified established MoA
proteins for 70% of the tested compounds and eluci-
dated novel proteins that were experimentally vali-
dated. Finally, unknown-MoA compound analysis re-
vealed altretamine, an anticancer drug, as an inhibitor
of glutathione peroxidase 4 lipid repair activity, which
was experimentally confirmed, thus revealing unex-
pected similarity to the activity of sulfasalazine. This
suggests that regulatory network analysis can pro-
vide valuable mechanistic insight into the elucidation
of small-molecule MoA and compound similarity.
INTRODUCTION

The mechanism of action of a compound (MoA) is defined as the

set of target and effector proteins necessary to produce its phar-
macological effect in a specific cellular context. Its elucidation is

critical in assessing both on-target compound activity as well as

off-target effects associated with potential toxicity, thus

providing critical insight into the two major challenges of drug

development (Scannell et al., 2012). Since most compounds in

clinical trials fail due to toxicity or lack of efficacy (Wehling,

2009), any improvements in systematic MoA characterization

may increase the yield of pharmacological discovery pipelines.

MoA characterization remains a major challenge that is only

partially addressed by experimental and computational strate-

gies. Most experimental approaches rely on direct binding as-

says, such as affinity purification (Hirota et al., 2012; Ito et al.,

2010) or affinity chromatography (Aebersold and Mann, 2003).

These methods are labor-intensive and generally limited to the

identification of high-affinity binding targets, rather than of all

proteins responsible for compound activity. They may thus

miss important indirect effectors, as well as lower-affinity targets

responsible for both desirable and undesirable pharmacolog-

ical properties. For instance, compounds can be effectively

screened against all protein kinases, while missing equally rele-

vant targets, as shown by the recent reclassification of the MET

inhibitor tivantinib as a microtubule inhibitor (Basilico et al.,

2013). In addition, these assays work in vitro and may miss ef-

fects from tissue-specific interactions and signals.

Chemo-informatics methods have also been developed. Yet,

these are mostly designed to assess compound MoA similarity

or specific compound/target interactions (Keiser et al., 2009; Lo-

menick et al., 2009; Miller, 2002), by leveraging the integration of

structural and genomic information (Yamanishi et al., 2008), text-

mining algorithms (Li et al., 2009), or machine learning methods

for data-mining (Hansen et al., 2009). As such, they rely on

detailed three-dimensional structures of both compound and

target proteins or on prior literature or database knowledge of
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Figure 1. Schematics of the DeMAND Algorithm

(A) DeMAND requires both a regulatory network and a set of gene expression profiles from compound perturbed and control samples, as an input.

(B) DeMAND evaluates the dysregulation of each interaction in the regulatory network.

(C) To evaluate interaction dysregulation co-expression scatter plots for the two interacting genes are smoothed using a Gaussian Kernel method to generate an

interaction probability density. The probability density difference before and after compound perturbation is evaluated using the KL-divergence. The top example

illustrates no change in probability density (i.e., no dysregulation). The other three examples illustrate various examples of compound dysregulation, including

correlation inversion, gain, and loss (top to bottom, respectively).

(D) The statistical significance of the KL-divergence is assessed by gene pair shuffling.

(E) The global dysregulation of each gene is determined by integrating the p values of all its network interactions, while accounting for their dependencies.

(F) DeMAND produces a list of all network genes and the statistical significance of their dysregulation.

See also Figure S1, Table S7, and Supplemental Experimental Procedures.
relatedMoA compounds.More recently, assembly of large refer-

ence compendia by systematic gene expression profiles (GEP)

analysis of cells following compound perturbations has spurred

development of MoA analysis methods (Ganter et al., 2005;

Lamb et al., 2006; Wolpaw et al., 2011). In general, however,

these methods are mostly comparative in nature and thus poorly

suited to de novo MoA elucidation or to recognize subtle MoA

differences that may induce unexpected toxicity. Network-

based methods have also been recently proposed (Bansal

et al., 2006; di Bernardo et al., 2005; Gardner et al., 2003; Mani

et al., 2008). Rather than focusing on individual genes, these

methods perform integrative analyses over interacting gene sub-

sets or pathways. Yet, these methods either rely on prior knowl-

edge of the pathways that mediate compound activity, making

them unsuitable for genome-wide analyses, or require very large

samples sizes (n > 100), thus making them impractical even for

small compound libraries. As a result, there is still a pressing
442 Cell 162, 441–451, July 16, 2015 ª2015 Elsevier Inc.
need for experimentally validated methodologies for the de

novo prediction of genome-wide compound targets and effec-

tors or to mechanistically elucidate MoA proteins associated

with differential activity or toxicity.

To address this challenge, we introduce detecting mechanism

of action by network dysregulation (DEMAND), a hybrid compu-

tational and experimental approach for MoA analysis. DeMAND

elucidates compound MoA by interrogating tissue-specific reg-

ulatory networks using small-size GEP datasets (nR 6 samples)

representing in vitro or in vivo, compound perturbations (Fig-

ure 1). Using GEPs from human lymphoma cells perturbed with

libraries of 14 and 92 compounds, respectively, we systemati-

cally assessed the algorithm’s ability to infer known compound

targets (from public databases) and then experimentally vali-

dated novel compound activity effector and modulator predic-

tions (hereafter MoA-proteins). DeMAND identified established

MoA proteins for >70% of these compounds, as well as novel
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proteins that were experimentally validated, such as RPS3A,

VHL, and CCNB1 for the mitotic spindle inhibitor vincristine

and JAK2 for mitomycin C. We also tested the algorithm’s ability

to assess compound MoA similarity. More than 50% of top

predicted compound pairs were confirmed by literature and

database analysis or by experimental validation. For instance

DeMAND identified altretamine, an unknown MoA compound,

as a novel GPX4 inhibitor based on predicted MoA similar to sul-

fasalazine, a system xc
� cystine-glutamate antiporter-mediated

GPX4 inhibitor (Yang et al., 2014).

DeMAND is freely available to the research community, both

as a Bioconductor package (Gentleman et al., 2004) and as a

web-based geWorkbench module (Floratos et al., 2010).

RESULTS

Overview of DeMAND Algorithm
Consider the regulon of a geneG, i.e., all its interactions (G4Gi)

with other genesGi, including transcriptional, signaling, and pro-

tein-complex interactions. If G belongs to a compound’s MoA,

then it is reasonable to assume that its regulon gene interactions

will be dysregulated by the compound. This can be optimally

assessed by measuring changes in the joint gene expression

probability density p(G,Gi), for each of its regulon genes. Such

analysis can capture direct effects on gene expression and

more importantly modulation of the interacting partner’s expres-

sion via either direct or indirect regulatory mechanisms (e.g.,

feedback loops). Consider for instance a transcription factor

regulating a set of targets. A targeted inhibitor will significantly

alter the joint expression probabilities p(G,Gi), as the expression

of the targets will be dysregulated even though the expression of

G is not generally affected (Figures 1 and S1; Experimental

Procedures).

The Kullback-Leibler divergence (KLD) (Kullback and Leibler,

1951) provides an ideal metric to quantitatively assess probabil-

ity density changes in one or more variables. From information

theory, the KLD is easily interpreted as the loss of information

resulting from using a probability density as a surrogate for

another. For each regulon interaction (G 4 Gi), we estimate

the KLD of each probability density p(G,Gi), before and after

compound perturbation. Their statistical significance is then

integrated, thus producing a global statistical assessment of

the compound-mediated dysregulation of G. To avoid overesti-

mating such integrative significance, due to interaction depen-

dencies, we use amodification of Brown’smethod that compen-

sates for the integration of correlated evidence (Brown, 1975). All

genes are then ranked based on their global KLD statistics.

To identify the regulon of each gene-product of interest, we

used a set of established network reverse engineering

algorithms (see Experimental Procedures). However, DeMAND

is agnostic to the specific approach and can use networks

generated by any alternative means, both computational and

experimental.

DeMAND Predictions Are Enriched in Established
High-Affinity Binding Targets
We first evaluated the accuracy of DeMAND-inferredMoA genes

for 14 selected compounds, using the perturbation dataset
(DP14) from the DREAM/NCI compound synergy challenge

(Bansal et al., 2014). This includes 276 GEPs of diffuse large B

cell lymphoma cells (OCI-LY3), following perturbation with 14

distinct compounds, of which 11 have established primary tar-

gets (Supplemental Experimental Procedures; Table S1), and

DMSO as control media, at two concentrations and three time

points, in triplicate. The network for these analyses was pro-

duced as described in Lefebvre et al. (2010), using a published

dataset of 226 U133p2 GEPs representing both normal and tu-

mor-related human B cells (Basso et al., 2010) (Supplemental

Experimental Procedures). Although DeMAND is designed to

predict both compound targets (i.e., high-affinity binding pro-

teins) and effectors/modulators, its performance can only be

systematically benchmarked against the former, because gold-

standard datasets to systematically assess the latter are not

yet available.

DeMAND identified the known primary targets of 7 of the 11

tested compounds as statistically significant, at a 10% false dis-

covery rate (FDR) (Figure S2A; Table S2; Experimental Proce-

dures). Since the GEPs used in this analysis were obtained at

multiple time points (6 hr, 12 hr, and 24 hr), we further assessed

whether individual time points may be more informative. Intrigu-

ingly, several targets were best predicted at specific time points

(Figure S2B), consistent with expectations that compound activ-

ity may be mediated over different timescales. Yet, integration

over all time points performed as well or better than the optimal

time point for all but two compounds (monastrol and doxoru-

bicin). For these, the direct target was significant only when spe-

cific time point GEPs were used. In total, targets for 9 of the 11

compounds could be elucidated either frommulti-point or single

time point analysis. Replacing interaction dysregulation with the

differential expression of neighbors reduces the performance

(see Supplemental Experimental Procedures).

Differential expression analysis has been proposed to eluci-

date compound substrates (Ganter et al., 2005; Lamb et al.,

2006; Wolpaw et al., 2011). We thus compared DeMAND’s per-

formancewith differential expression analysis, by t test statistics.

DeMAND systematically outperformed t test analysis, except for

blebbistatin for which neither method identified myosin II as sta-

tistically significant (Figure S2A). Indeed, DeMANDhadan almost

5-fold better sensitivity in the top 100 predictions, compared to t

test analysis (15% versus 3%), which was highly statistically sig-

nificant (p = 5 3 10�4 and p = 0.06 by c2 test, respectively) (see

Supplemental Experimental Procedures and Figure 2A). Further-

more, any targets thatwere significant by t test analysiswere also

significant by DeMAND analysis, but not the opposite. Consid-

ering the full area under the receiver operator characteristic

(ROC) curve (AUC), DeMAND also consistently outperformed

the t test, AUC = 0.70 (p = 2 3 10�16 by Fisher integration of

individual Mann-Whitney p values for each compound) versus

AUC=0.60 (p = 3.53 10�7), respectively, reflecting higher overall

sensitivity and specificity (Figure S2C).

To assess DeMAND’s performance on MoA proteins other

than high-affinity targets, we focused on two of the four com-

pounds, whose direct targets were missed, including campto-

thecin (a TOP1 inhibitor) and doxorubicin (a TOP2A inhibitor),

which severely disrupt DNA repair and mitosis. DeMAND

identified growth arrest and DNA damage-inducible gene 45A
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Figure 2. DP14 Dataset Analysis

(A) The average sensitivity (true-positive rate) for

identifying known direct targets in all DP14 com-

pounds, as a function of the number of top

selected predictions, using either DeMAND (blue +

yellow areas) or t test analysis (red + yellow areas).

DeMAND consistently outperforms t test. For

instance, DeMAND achieves �15% sensitivity

across the top 100 predictions, compared to only

3% for t test. Furthermore, virtually all targets that

are significant by t test analysis are also significant

by DeMAND analysis (no red area for up to 400

genes). In contrast, DeMAND identifies many tar-

gets that are missed by t test (large blue area).

(B) Comparative schematics of established MoA

genes for camptothecin, doxorubicin, and etopo-

side. Doxorubicin-specific DeMAND inferred MoA

genes are shownwith an orange background, while

common inferred MoA genes for all compounds

are shown with a purple background. The com-

mon genes include the core DNA-damage repair

machinery (GADD45A, PCNA, and CDNK1A) and

cell-cycle arrest genes (CCNB1, AURKA, PLK1).

Doxorubicin’s specific MoA includes KAT5, a

mediator of histone eviction.

(C) Rank of DNAdamage response genes across all

DP14 compounds. DeMAND predicts GADD45A,

the canonical DNA-damage-inducible gene and its

well-known partners CDKN1A, PCNA, CCNB1,

AURKA, and PLK1 among the most significant

genes only for the five DNA damaging agents (i.e.,

camptothecin, doxorubicin, etoposide, mitomycin

C, and vincristine).

See also Figure S2 and Tables S1 and S2.
(GADD45A), cyclin-dependent kinase inhibitor 1A (CDKN1A),

proliferating cell nuclear antigen (PCNA), Aurora Kinase A

(AURKA), polo-like kinase 1 (PLK1), and cyclin B1 (CCNB1)

among the most statistically significant genes for both com-

pounds (mostly in the top 20), which are known key downstream

effectors of TOP1 and TOP2A inhibition (Figure 2B). DeMAND

therefore identifies key MoA proteins for both these com-

pounds. More specifically, GADD45A, an established DNA dam-

age response effector (Goldwasser et al., 1996), acts by forming

protein complexes with CDKN1A and PCNA, a processivity fac-

tor of DNA polymerase delta required for high-fidelity DNA repli-

cation and excision repair (Smith et al., 1994). In turn, if DNA

damage is detected, CDKN1A, PCNA, and GADD45A regulate

the activity of CCNB1 (a critical effector of the G2/M cell-cycle

checkpoint) (Zhan et al., 1999), PLK1, and AURKA (a mitosis

regulator) either at the RNA or protein level (Shao et al., 2006).

Of these six genes, only GADD45A and CDKN1A were differen-

tially expressed, albeit at a much lower rank.

DeMAND Identifies Specific Differences in Compounds
with Similar MoA
Detailed assessment highlighted key differences and common-

alities in DeMAND-inferred MoA of compounds with similar

targets, which were undetectable by t test analysis. For instance,

camptothecin (TOP1), doxorubicin (TOP2A), and etoposide

(TOP2A) are all topoisomerase (TOP) inhibitors, which induce
444 Cell 162, 441–451, July 16, 2015 ª2015 Elsevier Inc.
single or double strand breaks following covalent trapping of

the TOP-DNA cleavable complex (Gilbert and Hemann, 2010).

Consistently, DeMAND identified a significant common footprint

in their inferredMoA, as shown in the previous section. However,

it also identified highly specific effectors, such as KAT5/TIP60 for

doxorubicin (ranked fourth), suggesting potentially relevant MoA

differences (Figure 2B). Indeed, contrary to etoposide and camp-

tothecin, doxorubicin is also a strong DNA intercalator, inducing

KAT5-dependent histone acetylation and release from open

chromatin (histone eviction) (Choi et al., 2009; Ikura et al.,

2000), leading to cell-cycle arrest (Pang et al., 2013). Similarly,

DeMAND identified SIK1 as a doxorubicin-specific effector

(ranked 36th), which is required for cardiac progenitor cell main-

tenance (CPCs) (Romito et al., 2010), thus pinpointing the com-

pound’s key adverse event, i.e., cardiomyopathy followed by

congestive heart failure (Zhang et al., 2012b). Both KAT5 and

SIK1 were completely missed by t test analysis.

Finally, DeMAND successfully stratified compounds based

on MoA gene overlap, further emphasizing its specificity. For

instance, for all DNA damaging agents, including camptothecin,

doxorubicin, etoposide, mitomycin C, and vincristine, DeMAND

predicted GADD45A, the canonical DNA-damage-inducible

gene, and its well-known interactors (CDKN1, CCNB1, PCNA,

and AURKA) among the most significant genes (Figure 2C).

Yet, these genes were not significant for other compounds

(Figure 2C), confirming the algorithm’s specificity.
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Figure 3. Validation of Novel Effectors of Vincristine and

Mitomycin C

(A) Immunohistochemistry-based imaging of microtubule networks in cells

treated with DMSO, vincristine, non-target siRNA, and siRNA-targeting

RPS3A. Non-target siRNA is indistinguishable from DMSO controls. Both

vincristine and siRPS3A significantly alter the microtubule network in U-2-OS

cells (4 nM of vincristine for 24 hr). Images represent red channel intensity.

(B) Vincristine dose response curves in U-2-OS following transfection with

non-target siRNA (blue) or siRNA-targeting CCNB1 (orange), VHL (red),

NFKBIA (black), and RPS3A (green). RPS3A and CCNB1 silencing reduces cell

sensitivity to vincristine, while VHL silencing increases sensitivity by 2-fold. The

error bars indicate the SD from the mean using three replicates. See also

Supplemental Experimental Procedures and Table S3.

(C) Mitomycin C dose-response curves in OCI-LY3 normalized to DMSO

treatment (black) or following treatment with TG101348 (a JAK2 inhibitor), at

0.2 uM (green), 0.4 uM (cyan), and 0.6 uM (blue). JAK2 inhibition induces loss of

sensitivity to mitomycin C.
Validation of Novel Effectors and Modulators of
Compound Activity
To assess whether DeMAND can identify novel compound effec-

tors andmodulators,we validated novel predictions for vincristine

and mitomycin C, an inhibitor of microtubule formation in mitotic
spindle and an antineoplastic antibiotic, respectively. DeMAND

successfully identified the known high-affinity target of vincristine

(TUBB), as well as CCNB1, VHL, RPS3A, and NFKBIA, in the top

fivepredictions.WhileRPS3AandVHLareknown toaffectmitotic

spindle assembly (Jang et al., 2012; Thoma et al., 2009), and

CCNB1 is a microtubule activity marker, their function in medi-

ating/modulating vincristine’s activity is unknown.

Probing themicrotubule network with an anti-tubulin antibody,

following small interfering RNA (siRNA)-mediated silencing of

these genes, confirmed that loss of RPS3A (but not of VHL,

CCNB1, or NFKBIA) disrupts microtubules in adherent U-2-OS

cells (Figure 3A). To further validate the role of these genes in

mediating vincristine’s activity, we performed dose-response

curve assays in U-2-OS cells, following silencing of each gene

(Supplemental Experimental Procedures; Table S3). These as-

says confirmed that all of these genes, except for NFKBIA, are

key vincristine activity effectors and mediators. Specifically,

VHL silencing increased vincristine sensitivity by more than

2-fold (Figure 3B), while RPS3A and CCNB1 silencing had the

opposite effect. Thus, four out of five of the top DeMAND-

inferred genes were confirmed vincristine activity modulators,

including its primary target (TUBB), suggesting that, for some

compounds, false positive rates may be as low as 20%. None

of these genes were significant by t test analysis.

DeMAND also inferred the JAK2 kinase as an exclusive mito-

mycin C MoA protein (i.e., JAK2 was not significant by DeMAND

analysis for any other compound). This is of potential importance

since constitutive activity of JAK2 causes chemo-resistance

in lymphocytes (Gupta et al., 2012), while constitutive JAK2 ac-

tivity may also affect DNA damage, repair, and recombination

outcome (Hoser et al., 2003). Confirming the prediction, dose-

response curves for mitomycin C, following treatment with vary-

ing amounts of TG101348 (a JAK2 inhibitor), revealed highly sig-

nificant, dose-dependent antagonism between JAK2 inhibition

and mitomycin C activity (Figure 3C; Experimental Procedures).

Finally, we analyzed DeMAND-inferred results for rapamycin.

While DeMAND could not predict the highest-affinity targets,

MTOR and FKBP1A, many genes downstream of MTOR path-

ways (Hsieh et al., 2012) were highly enriched in the top

DeMAND-inferred genes (Figure S2E), including many ribosomal

genes. The only other compound with significant ribosomal gene

enrichment was cycloheximide, a known ribosomal activity in-

hibitor, thus further highlighting the algorithm’s specificity.

Algorithm Robustness and Requirements
We then benchmarked DeMAND’s performance as a function of

network accuracy and size, as well as of the number of samples

in the perturbation dataset. First, we compared the results ob-

tained using an independent B cell gene regulatory network, re-

constructed from a distinct dataset of 254 Affymetrix U95av2

GEPs (see Experimental Procedures). We tested the enrichment

of statistically significant DeMAND-inferred genes (FDR % 0.1),

using the U95av2 network, against those inferred using the

U133p2 network, byGene Set Enrichment Analysis (GSEA) (Sub-

ramanian et al., 2005). The analysis confirmed that DeMANDpre-

dictions were almost identical, independent of network model

(p < 1 3 10�9 by GSEA; Figure S3A). Furthermore, predictions

were virtually unaffected when up to 60% of the network
Cell 162, 441–451, July 16, 2015 ª2015 Elsevier Inc. 445
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Table 1. Thirteen Compound Perturbation Datasets from the

GEO Database

Compound Cellular Context GEO ID

Zoledronate metastatic breast cancer cell lines

(MDA-MB-231)

GSE33552

Valproic acid chronic lymphocytic leukemia

(patient-derived B cells)

GSE14973

Genistein breast cancer cell lines (MCF-7) GSE9936

S-Equol breast cancer cell lines (MCF-7) GSE9936

Estradiol breast cancer cell lines (MCF-7) GSE9936

Rituximab B cell non-Hodgkin’s lymphoma

cell lines (K422)

GSE7292

Thapsigargin lytic-permissive lymphoblastoid

cell lines

GSE31447

Fluvastatin metastatic breast cancer cell lines

(MDA-MB-231)

GSE33552

MALT1 inhibitor diffuse large B cell lymphoma

(patient-derived B cells)

GSE40003

Docetaxel breast cancer cell lines (MCF-7) GSE5149

g-Secretase

inhibitor

MCL cell lines GSE34602

Triptolide breast cancer cell lines (MCF-7) GSE28662

Actinomycin D breast cancer cell lines (MCF-7) GSE28662

See also Figure S4 and Table S4.
interactions were randomly removed (Figure S3B; Experimental

Procedures). Similarly, predictions were virtually identical, as

long as six or more GEPs representative of compound perturba-

tion were used (Figure S3C; Supplemental Experimental Proce-

dures). Taken together, these data suggest that DeMAND is

highly robust to network noise and especially to false negative

interactions and that it can be applied to datasets with as few

as six treatment and six untreated controls GEPs.

We then selected 13 datasets representing compound pertur-

bations (GEO13) from the GEO database (Table 1; Table S4).

Only compounds with established targets with at least six treat-

ment/control GEPs were selected, including seven human

breast cancer and six human B cell lymphoma datasets. Con-

firming results on the DP14 dataset, DeMAND inferred known

direct targets for 62% of these compound perturbations

(FDR % 0.1; Figure S4A), while still significantly outperforming t

test-based methods (AUC = 0.82 versus 0.74, respectively, p

value = 2.2 3 10�16 versus p value = 5.9 3 10�8, respectively,

by Fisher integration of individual Mann-Whitney p values for

each compound) (Figure S4B). Among top-predicted MoA pro-

teins, DeMAND again achieved �5-fold better performance

than t test (Figure S4C).

DeMAND-Inferred MoA Stratifies Pharmacological
Effect
We then assessed whether DeMAND-inferred MoA overlap was

predictive of pharmacological compound similarity. We first

computed the significance of MoA overlap for each DP14 com-

pound pair (FDR % 0.1 by Fisher’s exact test [FET]) (Figure 4A;

Table S5; Experimental Procedures). Among all 91 possible
446 Cell 162, 441–451, July 16, 2015 ª2015 Elsevier Inc.
compound pairs, the six most similar ones included only

topoisomerase inhibitors and other DNA-damaging agents

(etoposide, doxorubicin, camptothecin, and mitomycin C).

Thus, DeMAND successfully assessed high compound MoA

similarity between topoisomerase inhibitors and other DNA-

damaging agents even though it could not identify TOP1 or

TOP2A among the inferred MoA genes, suggesting that key

effector proteins may be as informative as direct targets in terms

of compound similarity.

To further evaluate this hypothesis, we applied the method to

a much larger compound perturbation dataset (DP92), repre-

senting GEPs from three B cell lymphoma cell lines (OCI-LY3,

OCI-LY7, and U-2932), following perturbation with 92 unique

FDA-approved, late-stage experimental, and tool compounds

(Table S6; Supplemental Experimental Procedures). Since only

three GEPs per compound and cell line are available in this data-

set, we used it only for compound-pair similarity assessment

(see Experimental Procedures).

DeMAND performance was objectively evaluated by com-

parison with three independent data sources: (1) compounds

sharing established targets, (2) compounds sharing therapeutic

and chemical characteristics, according to the Anatomical

Therapeutic Chemical (ATC) classification system, and (3) com-

pounds with correlated drug-response profiles, as assessed by

the Cancer Target Discovery and Development (CTD2) con-

sortium (Basuetal., 2013) (seeSupplementalExperimentalProce-

dures). The latter dataset recapitulates dose-response curve vec-

tors representing 338 unique compounds profiled against 257

distinct cancer lines.We evaluated the fraction of validated similar

pairs (precision), basedoneachof the three evidencedatasets, as

a function of the number of significant pairs (precision curves, Fig-

ure 4B).DeMAND-inferredpairswere highly enriched in pairs from

three evidence datasets, as assessed by each of the evidences

individually (i.e., p value = 2 3 10�8, 1.4 3 10�5, and 9 3 10�4,

by GSEA, for pairs sharing the same ATC class, common estab-

lished targets, and high dose-response vector correlation in the

CTD2 dataset, respectively; Figure S5A), and also when taken

together (GSEA p value = 7.6 3 10�7). For instance, 8 of the top

10 and 43 of the top 100 DeMAND-inferred pairs were validated

by at least one of the three datasets (p = 2.23 10�16 by FET).

DeMAND outperformed predictions using similarity obtained

by overlapping statistically significant differential expressed

genes (e.g., by t test statistics) by consistently achieving higher

sensitivity at any precision value (Figure S5B). DeMAND also

outperformed another state of the art method, (MANTRA) (Iorio

et al., 2010), which uses mutual gene set enrichment analysis

(Subramanian et al., 2005) to compute similarity, again by

achieving higher sensitivity at almost any desired precision value

(Figure S5B).

Finally, we evaluated the correlation between compound-pair

similarity as predicted by each method and their CTD2-based

similarity. DeMAND prediction achieved significant Spearman

correlation (r = 0.59, p value = 7.8 3 10�5; Figure S5C), while

both the t test andMANTRAmethods did not achieve statistically

significant correlation (Figures S5D and S5E). Thus, DeMAND

could predict compounds with similar pharmacological effect

and activity profile using only the GEP following their treatment

in a single cell line.
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A B Figure 4. Compound Similarity Inference

(A) Compound similarity is assessed based on the

statistical significance (by FET) of the overlap of

their DeMAND-inferred MoA proteins.

(B) DeMAND-inferred compound similarity in the

DP92 dataset is assessed by (a) the overlap of

known direct targets between two compounds

(orange), (b) compound sensitivity profile similarity

based on CTD2 data (green), (c) overlap in com-

pound classification, according to the Anatomical

Therapeutic Chemical (ATC) Classification (blue),

or (d) any of the above evidences (black).

See also Figure S5 and Tables S5 and S6.
DeMAND Identifies GPX4 as a Novel MoA Effector for
Altretamine
We identified altretamine and sulfasalazine as the compound

pair with the highest DeMAND-inferred MoA similarity (p value =

9.91 3 10�81), among all pairs where the MoA of at least one

compound was unknown. Altretamine is an FDA-approved anti-

neoplastic drug with no established targets or effectors. Instead,

sulfasalazine is an inhibitor of system xc
�, the cystine-glutamate

antiporter (Dixon et al., 2014), required for the biosynthesis of

glutathione (GSH). Thus sulfasalazine inactivates enzymes that

rely on reduced glutathione (GSH) as a cofactor, including gluta-

thione peroxidase 4 (GPX4) (Dixon et al., 2012; Yang et al., 2014),

leading to toxic accumulation of lipid reactive oxygen species

(ROS).

We thus tested whether altretamine may also modulate

the system xc
�-GPX4 pathway. U-2932 cells were treated with

altretamine and their GSH levels were assessed using Ellman’s

reagent (Figure 5A; Supplemental Experimental Procedures).

Sulfasalazine was used as a positive control for GSH depletion

in U-2932 cells, confirming depletion of GSH levels following

compound treatment. In contrast, altretamine did not deplete

GSH levels, even after doubling its IC50 at 24 hr concentration,

suggesting that the compound may target mechanisms down-

stream of GSH in this pathway. We thus treated U-2932 cells

with altretamine and prepared cell lysates for a liquid chromatog-

raphy-mass spectrometry (LC-MS)-based GPX4 assay. Phos-

phatidylcholine hydroperoxide (PC-OOH), a specific substrate

for GPX4 (Brigelius-Flohé and Maiorino, 2013), was added to

cell lysates and PC-OOH to PC-OH reduction was assessed

by the mass chromatogram of the [PC-OOH + H+] ion (m/z =

790.5). As shown in Figure 5B, lysates of untreated cells reduced

PC-OOH levels completely, leaving no residual signal for the

[PC-OOH + H+] ion (m/z = 790.5). In sharp contrast, lysates

from altretamine-treated cells displayed a significant [PC-

OOH + H+] signal, indicating that abrogation of PC-OOH

reduction was mediated by GPX4 inhibition (Experimental Pro-

cedures). Indeed, since GPX4 is the only enzyme capable of

reducing lipid hydroperoxides (Yang et al., 2014), GPX4 inhibi-

tion is necessary to increases lipid-ROS levels (Thomas et al.,

1990). As expected, both sulfasalazine and altretamine were

confirmed to induce lipid-ROS accumulation in U-2932 cells,

as assessed by BODIPY-C11 staining and flow cytometry

(Figure 5C; Experimental Procedures). Thus, DeMAND correctly
predicted the unexpected mechanistic similarity between the

MoA of two previously unrelated drugs (Figure 5D), showing

altretamine as a new GPX4 inhibitor and suggesting a potential

mechanism for its antineoplastic activity.

DISCUSSION

DeMAND elucidates compound MoA by assessing com-

pound-mediated dysregulation of gene-gene interactions on a

genome-wide basis, from gene expression profiles of compound

perturbations. DeMAND reliably identifies compound targets, ef-

fectors, and activity modulators, allowing effective assessment

of compound MoA and MoA similarity. Indeed, DeMAND identi-

fied known and novel MoA genes for vincristine, mitomycin C,

and altretamine that were experimentally validated. DeMAND

also elucidated a novel MoA for altretamine, confirming its pre-

dicted similarity to sulfasalazine.

DeMAND was shown to be highly robust to network and sam-

ple variability. More importantly, unlike previous methods (di

Bernardo et al., 2005; Mani et al., 2008), DeMAND can reliably

predict compound MoA using as few as six control and six

perturbation samples. This allows unprecedented applicability

of the methods to elucidate MoA for novel developmental com-

pounds within specific cellular contexts of interest, including

in vivo.

DeMAND leverages integration of GEPs obtained at multiple

time points and at multiple compound concentrations, thus

simplifying experimental design when the precise concentration

or time points at which the MoA may be revealed is unknown.

Indeed, absent prior knowledge, compound MoA was optimally

revealed by integrating multi-time-point compound perturba-

tions for all but two of the tested compounds (Figure S2B).

DeMAND predictions are highly specific, allowing classifica-

tion of compounds into groups of similar function and identifi-

cation of pathways that are relevant to compound MoA. For

instance, for DNA-damaging compounds (camptothecin, doxo-

rubicin, etoposide, vincristine, and mitomycin C), DeMAND

correctly predicted several of the hallmark genes involved in

DNA-damage-induced response. The specificity was evidenced

by the fact that relevantMoA proteinswere inferred only for DNA-

damage inducing compounds and not for any other compound

(including compounds exhibiting significant polypharmacology

like H-7 dihydrochloride or cycloheximide). In other examples,
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A

B D

C Figure 5. DeMAND Identifies the MoA of Al-

tretamine

(A) GSH concentration following treatment of cells

by negative control (DMSO, gray), sulfasalazine as

a positive control (red), and altretamine (blue)

show that sulfasalazine reduces active GSH levels

compared to control, while altretamine results in

activeGSH levels indistinguishable from the control.

(B) The level of a GPX4-specific substrate (PC-

OOH) is measured by mass spectrometry (a)

without cell lysate (gray), (b) with untreated cell

lysate (green), and (c) with cell lysate from altret-

amine-treated cells (blue). PC-OOH levels in al-

tretamine-treated cells are similar to no-lysate and

markedly different from untreated lysate, indicating

that altretamine inhibits GPX4 activity.

(C) Lipid reactiveoxidativespecies (ROS) levelswere

measured by flow cytometry using DMSO-treated

cells (blackcurve,ascontrol) andcompound-treated

cells (red curve). Both altretamine and sulfasalazine

significantly increases lipid-ROS levels, confirming

the predicted similarity in their functional effect.

(D) Sulfasalazine is a known inhibitor of the System

xc
� cystine/glutamate antiporter. Its downstream

effect on Glutathione (GSH) and GPX4 leads to

accumulation of lipid ROS. DeMAND predicted

significant similarity between sulfasalazine and al-

tretamine and GPX4 but not GSH as altretamine-

specificMoAproteins, as experimentally confirmed

panels (A–C).
high MoA specificity was shown for doxorubicin, where

DeMAND identified KAT5, consistent with recent findings

of KAT5-mediated histone eviction, as well as SIK1, a gene

required for cardiac progenitor cells maintenance, providing a

potential mechanistic link between doxorubicin and its known

cardiac toxicity. Critically, SIK1 was also detected in the MoA

of other DNA damaging agents, albeit at much lower rank/signif-

icance, suggesting that these compounds should also be moni-

tored for cardiac toxicity. Taken together, these findings suggest

that the algorithm is equally effective in predicting both direct tar-

gets and indirect compound effectors, thus helping elucidate

both on-target pharmacology and off-target toxicity. Overall,

DeMAND identified known MoA proteins for >70% of tested

compound, while experimental validation suggests that false

discovery rates (FDR) may be as low as 20%, although more

extensive FDR estimate is impossible at this time because com-

poundMoA in databases is largely incomplete, producing signif-

icant FDR overestimate. For instance, following experimental

validation, FDR for vincristine went from 80%, as only TUBB

was an established compound target/effector, to 20%.

DeMAND relies on the existence of high quality context-spe-

cific gene regulatory networks, which may represent a limitation

for specific cellular contexts. However, given the abundance of

data generated by large-scale projects such as the Cancer

Genome Atlas (TCGA) and other related consortia, as well as

the availability of increasingly accurate and comprehensive

methods for context-specific network reverse engineering (Cal-

ifano et al., 2012; Zhang et al., 2012a), this limitation is at best

temporary. However, network availability does not guarantee

identification of MoA proteins that are poorly represented. For

instance, for blebbistatin (a myosin II inhibitor), using the
448 Cell 162, 441–451, July 16, 2015 ª2015 Elsevier Inc.
U95av2 network, DeMAND identified PTK2B, GRB2, and FYN,

all of which are both direct regulators of myosin II phosphoryla-

tion and responders to myosin II perturbation (Sieg et al., 1998)

(Figure S2D). Yet, due to lack of GRB2 representation in the

U133p2 network, this gene could not be inferred. It is also impor-

tant to highlight that DeMAND analysis of the DP14 and DP92

datasets, using a high quality context-free network from the

STRING database (Franceschini et al., 2013), was still able to

identify ubiquitous targets and effectors (e.g., those involved in

cell-cycle and DNA damage repair mechanisms) with high preci-

sion and sensitivity, but exhibited lower performance both in

compound similarity analysis and in the identification of genes

with context-specific function/expression. This suggests that

non-context-specific networks can still be used for DeMAND

analyses, albeit with an increase in false positive and negative

predictions.

An important, albeit not critical, limitation of the current meth-

odology is the lack of prediction of compound activity sign, i.e.,

whether a compound will induce increase or decrease in an

inferred MoA protein activity. Conversely, the method cannot

predict whether inhibiting an inferredMoAprotein will likely either

increase or decrease drug activity. Presently, the only way to

resolve this question is by follow-up experimental assays. In

addition, the need for at least six GEPs at multiple concentra-

tions and time points is a potential limitation when assessing

MoA for large compound libraries. Despite these limitations,

however, DeMAND has proven highly effective in the de novo

identification of context-specific targets and effectors for arbi-

trary compounds of interest, providing important insight into

the prioritization of novel compounds for development, or into

the repositioning of previously approved compounds.
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EXPERIMENTAL PROCEDURES

Networks Used in the Analysis

We generated context-specific gene-regulatory networks with both protein-

DNA and protein-protein interactions (Table S7). The analysis used both

context-specific GEPs and context-independent information from multiple

experimental and computational databases, which was integrated into a final

interactome using Naive Bayes Classifiers (see Lefebvre et al. [2010] and

Supplemental Experimental Procedures for detailed information). B cell-

and breast cancer-specific networks as well as the STRING database can

be downloaded from http://wiki.c2b2.columbia.edu/califanolab/index.php/

Software/DeMAND.

Evaluating Interaction Dysregulation

For each pair of interacting genes in the network, we compute a two-dimen-

sional probability density from their discrete rank-transformed expression in

a given condition (treatment or control), by Gaussian kernel smoothing, using

Silverman’s approach (Silverman, 1986). The sum of the Gaussian probabili-

ties densities from treatment samples, computed at each point of the discrete

rank space, provides the perturbation probability distribution P, while that from

control samples provides the control probability distribution Q. The distance

between the two discrete probability distributions is evaluated using a sym-

metric form of the Kullback-Leibler divergence (KLD), obtained by averaging

KLD (PjQ) and KLD (QjP).
KLD statistical significance is determined using a null distribution generated

by 105 KLD values generated from random gene pairs (regardless of whether

they share a network edge), providing individual edge dysregulation p values.

These are integrated across all the interactions in a specific gene regulon,

using the Fisher’s method, and corrected using a modification of Brown’s

method for correction of p value dependence (Brown, 1975), using the

covariance between the residuals from a linear fit to the common gene, a

(Figure S1A). A more detailed description of this method is available in the

Supplemental Experimental Procedures.

Determining Known Direct Targets of Compounds

Established targets for tested compounds were obtained from DrugBank

(Wishart et al., 2008),MATADOR (Günther et al., 2008), and literature searches.

For MATADOR, only genes annotated as ‘‘direct’’ or ‘‘direct-indirect’’ were

considered as compound targets, while genes labeled as ‘‘indirect’’ were dis-

carded. For a list of compound targets see Table S1.

Assessing Drug Similarity

To evaluate compound similarity, we first selected statistically significant MoA

genes (FDR% 0.1) for each compound. We then computed the significance of

their overlap by FET analysis. Many genes were not significant for any com-

pounds, thus biasing this analysis. To reduce this effect, we removed these

genes from the analysis. Notably this correction did not affect compound

pair ranking but only their absolute similarity p values, by avoiding p value

underestimation.

To compute similarity p values using the DP92 dataset we calculated

p values for each of the three cell lines independently and used Fisher’s

method to combine them.

Robustness Analysis

To evaluate the effect of network accuracy on DeMANDs’ performance, we

gradually removed interactions at random, in 10% increments and compared

the overlap of significant perturbed and unperturbed MoA protein predictions

by FET analysis. To evaluate the effect of sample size, we subsampled i sam-

ples (i = 3..18) from the compound-treated and from the control samples and

compared these results with the result obtained using all samples. Both ana-

lyseswere performed independently on each of the 14 compounds in theDP14

dataset. See the Supplemental Experimental Procedures for additional infor-

mation and Figure S3 for the results of the analysis.

Cell Culture

Diffuse large B cell lymphoma (DLBCL) OCI-LY3 and OCI-LY7 cells were ob-

tained from University Health Network (Toronto, Canada); the U-2932 DLBCL
cell line was purchased from the Leibniz-Institute DSMZ German Collection of

Microorganisms and Cell Cultures; the U-2-OS osteosarcoma cell line was ob-

tained from ATCC (ATCC HTB-96). OCI-LY3, OCI-LY7, U-2932 cells were

cultured in Iscove’s modified Dulbecco Medium (IMDM) supplemented with

10% fetal bovine serum at 37�C in a 5% CO2 atmosphere. U-2-OS cells

were cultured in McCoy’s 5A medium, supplemented with 10% fetal bovine

serum.

Dose-Response Curves

The 92 compounds were selected based on primary activity screen of FDA-

approved, late-stage experimental and tool compounds. OCI-LY3, OCI-LY7,

and U-2932 cells were seeded in white tissue culture-treated 96-well plates,

at a density of 53 104 cells per well in 100 ml total volume using the Janus auto-

mated liquid handling system (Perkin Elmer). After 12 hr of incubation at 37�C,

plates were allowed to cool to room temperature, prior to compound addition

via the Janus. Compoundswere diluted in DMSO as a 7-point dilution curves in

a stock plate, 1 ml of these stock solutions where transferred into assay plates,

in triplicate. Thesewere subsequently placed on an orbital shaker for 5min and

then back in the incubator. At 24 hr, plates were removed from the incubator

and equilibrated to room temperature before addition of 50 ml of CellTiter-

Glo Luminescent Cell Viability Assay (Promega) per well. Plates were shaken

5 min on an orbital shaker before data acquisition in an Envision (PerkinElmer)

(0.5 s read time, enhanced luminescence). IC20 values were assessed using a

four parameter fit model (IDBS Activity Base).

Compound Treatment for Gene Expression Profiling

Cells were seeded in tissue culture-treated 96-well plates at a density of 5 3

104 cells per well using the Janus automated liquid handling system (Perkin

Elmer). They were then treated with the 24 hr IC20 of each compound (by

DMSO dilution) for 6 hr, 12 hr, and 24 hr at 37�C, 5% CO2 under humidified

conditions. For each compound/condition combination one single data point

was analyzed and 0.2% DMSO vehicle-treated samples were used as con-

trols. Viability assay was run in parallel to monitor the compound effectiveness.

Generation of Gene Expression Profiles

Total RNA was isolated with the RNAqueous-96 Automated Kit (Ambion)

on the Janus automated liquid handling system (Perkin Elmer), quantified

by NanoDrop 6000 spectrophotometer and quality checked by Agilent

Bioanalyzer. A total of 300 ng of each of the samples with an RNA integrity

(RIN) value >7 were converted to biotinylated cRNA with the Illumina

TotalPrep-96 RNA Amplification Kit (Ambion) using a standard T7-based

amplification protocol and hybridized on the Human Genome U219 96-Array

Plate (Affymetrix). Hybridization, washing, staining, and scanning of the array

plates were performed on the GeneTitan Instrument (Affymetrix) according

to manufacturer’s protocols.

GPX4 Enzymatic Activity Assay

GPX4 enzymatic activity assay was performed as described in Yang et al.

(2014). Briefly, 13 106 cells were re-suspended in the cell lysis buffer. Sonicat-

ion was used to make cell lysates followed by centrifugation at 14,000 rpm for

10 min. Protein concentration of the cleared cell lysates was determined using

a Bradford protein assay (Bio-Rad). Two hundred micrograms of cellular

proteins was mixed with phosphatidyl choline hydroperoxide (PC-OOH),

the GPX4-specific substrate, and reduced glutathione, a GPX4 cofactor. The

mixture was incubated at 37�C for 30 min followed by lipid extraction using

a chloroform:methanol (2:1) solution. The lipid extract was evaporated using

a rotary evaporator and re-dissolved in 100% ethanol before injecting into

LC-MS instrument for PC-OOH quantitation.

Analysis of Lipid ROS Generation

U-2932 cells (23 105) were seeded in 6-well plates and incubated at 37�C for

16 hr. Cells were treated with test compounds for the indicated time, then har-

vested, pelleted, and washed once with PBS. For lipid ROS detections, cells

were re-suspended with Hanks balanced salt solution (HBSS, Life Technolo-

gies) containing C11-BODIPY (581/591) (2 mM) (Life Technologies) and incu-

bated for 10 min at 37�C. Cells were then pelleted, re-suspended in 500 ml

HBSS, strained through 40-mM cell strainer (BD Falcon), and analyzed using
Cell 162, 441–451, July 16, 2015 ª2015 Elsevier Inc. 449
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BD Accuri C6 flow cytometer (BD Biosciences). C11-BODIPY signal was

measured using FL1 channel. Experiments were done in biological triplicates,

and a representative result was shown.

Co-treatment with Mitomycin C and a JAK2 Inhibitor

The JAK2-selective inhibitor TG101348 (Wernig et al., 2008) and Mitomycin C

were purchased from Selleckchem and Tocris Bioscience, respectively, and

were dissolved in DMSO. OCI-LY3 cells were treated with the indicated com-

pounds in 96-well plates and their growth was determined using the CellTiter-

Glo Luminescent Cell Viability Assay (Promega). Typically, 30,000 OCI-Ly3

cells per well in 200 ml of growth medium were grown for 48 hr in the presence

or absence (DMSO alone) of the desired compounds and then assayed with

CellTiter Glo according to manufacturer’s instructions.
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SUMMARY

Although genetically engineered mouse (GEM)
models are often used to evaluate cancer therapies,
extrapolation of such preclinical data to human can-
cer can be challenging. Here, we introduce an
approach that uses drug perturbation data from
GEM models to predict drug efficacy in human can-
cer. Network-based analysis of expression profiles
from in vivo treatment of GEM models identified
drugs and drug combinations that inhibit the activity
of FOXM1 and CENPF, which are master regulators
of prostate cancer malignancy. Validation of mouse
and human prostate cancer models confirmed the
specificity and synergy of a predicted drug combina-
tion to abrogate FOXM1/CENPF activity and inhibit
tumorigenicity. Network-based analysis of treatment
signatures from GEM models identified treatment-
responsive genes in human prostate cancer that
are potential biomarkers of patient response. More
generally, this approach allows systematic identifica-
tion of drugs that inhibit tumor dependencies,
thereby improving the utility of GEMmodels for prior-
itizing drugs for clinical evaluation.

INTRODUCTION

Recent large-scale genomic analyses have led to the identifica-

tion of ‘‘actionable’’ driver genes of specific cancers that are

therapeutically accessible, including oncogene and non-onco-

gene dependencies (Al-Lazikani et al., 2012; Garraway and

Lander, 2013; Luo et al., 2009; Rubio-Perez et al., 2015). How-

ever, the accurate and efficient identification of drugs and drug

combinations that inhibit such drivers within specific tumor con-

texts represents a major challenge, particularly for transcrip-
tional regulators that, in general, are pharmacologically inacces-

sible. Genetically engineered mouse (GEM) models are well

suited to empower investigations of targeted inhibitors in the

context of the native tumor microenvironment in vivo (Abate-

Shen and Pandolfi, 2013; Politi and Pao, 2011; Sharpless and

Depinho, 2006). However, species differences with respect to tu-

mor histology, physiology, pharmacology, andmetabolism often

preclude direct extrapolation of preclinical findings from mouse

models to human cancer.

In the current study, we introduce an innovative regulatory-

network-based method that uses expression profiles from

drug-treated GEM models to predict drugs and drug combina-

tions that specifically inhibit the activity of established human

cancer dependencies. We focus this proof-of-concept study

on prostate cancer, a disease characterized by heterogeneity

of its causal mechanisms and range of disease outcomes

(Chang et al., 2014; Cooperberg et al., 2005; Roychowdhury

and Chinnaiyan, 2013; Shen and Abate-Shen, 2010). In partic-

ular, while most locally invasive prostate tumors are curable,

recurrent or aggressive tumors initially respond to androgen

deprivation therapy but ultimately relapse to castration-resistant

metastatic disease, which is nearly always fatal (Ryan and Tin-

dall, 2011; Scher and Sawyers, 2005). While treatment options

for castration-resistant metastatic prostate cancer have signifi-

cantly improved in recent years (Mukherji et al., 2014; Rathkopf

and Scher, 2013; Wong et al., 2014), none of the available treat-

ments are as yet curative.

We have recently generated genome-wide reverse-engi-

neered regulatory networks (henceforth ‘‘interactomes’’) for

both mouse and human prostate cancer (Aytes et al., 2014).

Interrogation of these interactomes identified FOXM1 and

CENPF as master regulators (i.e., key driver genes), which func-

tion synergistically to elicit synthetic lethality and are robust pre-

dictors of poor patient outcome (Aytes et al., 2014). Here, we

show that interrogation of in vivo drug perturbation signatures

from GEM models represents an effective strategy for system-

atic identification of specific drugs and drug combinations that
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Figure 1. Computational Prediction of Drugs that Inhibit FOXM1/CENPF Activity In Vivo

(A) Shown is the strategy for prediction of single drugs. Drug reversion scores were calculated based on the degree to which target genes that are activated (red)

by a master regulator (MR) are inhibited (blue) following drug treatment, and conversely, the degree to which target genes that are repressed (blue) by the MR are

activated (red) following drug treatment (see Supplemental Experimental Procedures).

(B) Heatmap representations of GSEA used to calculate drug reversion scores across a series of GEM models with a series of drugs, as indicated (see Sup-

plemental Experimental Procedures). GSEA were done using the mouse in vivo drug perturbation signatures as the reference and human or mouse FOXM1/

CENPF target genes inferred from their respective prostate cancer interactomes, as indicated, as the query gene set. Global reversion scores (GRSs) were

calculated for each drug by combining the individual NES for each GEM model using a metric based on the Stouffer integration formulation (see Supplemental

Experimental Procedures). Arrows point to the two drugs with the highest GRSs.

(C) Shown is the strategy for prediction of drug synergy. Pairwise combinations of data from individual drug treatments (as in A) were assessed to predict

drugs that effectively revert FOXM1/CENPF target genes when used in combination. Scenario 1 illustrates two drugs that inhibit (i.e., revert) many target

(legend continued on next page)
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inhibit the transcriptional activity of FOXM1/CENPF. Strikingly,

drug combinations that revert transcriptional activity of these

proteins are highly effective in abrogating tumorigenesis in vivo

and well correlated with patient outcome. We propose that this

computational method can be generalized for more effective uti-

lization of preclinical data from GEM models to predict optimal

drugs and drug combinations and thereby dramatically improve

the utilization of GEMmodels to prioritize compounds for clinical

investigation.

RESULTS

Systematic Inference of FOXM1/CENPF Inhibitors
In Vivo
The current methodology is predicated on our previous analyses

showing that expression of the target genes of a given master

regulator (MR) (its regulon) represents an effective reporter to

predict the activity of theMR for a given cancer phenotype (Aytes

et al., 2014; Carro et al., 2010; Chen et al., 2014). Here, we have

extended this concept to evaluate whether such regulon can be

used as a reporter to quantitatively measure the ability of a drug

or drug combination to inhibit the activity of the corresponding

MR. In general, reversion of MR activity would correspond to

the ability of a given drug to downregulate its activated target

genes and upregulate its repressed targets (Figure 1A). As a

proof of concept for this approach, we evaluated drugs for their

ability to inhibit the master regulator pair, FOXM1/CENPF, which

we have previously established to be a key synthetic lethal de-

pendency of prostate tumor malignancy (Aytes et al., 2014). In

particular, we tested whether candidate therapeutic agents

could be prioritized based on in vivo perturbation by assessing

their ability to ‘‘reverse’’ the FOXM1/CENPF regulon. We

focused on the activated shared targets of FOXM1/CENPF,

since the number of repressed targets is too few for analysis.

However, both activated and repressed targets may be used in

general.

To assess this strategy, we used a drug perturbation dataset

that includes drugs with known prostate cancer relevance,

such as those that inhibit the androgen receptor, or key signaling

pathways such as phosphatidylinositol 3-kinase (PI3K)/mTOR or

MAP kinase or standard chemotherapy (Aytes et al., 2014; see

Supplemental Experimental Procedures). In vivo drug perturba-

tion studies were performed using multiple GEM models repre-

sentative of advanced prostate cancer (Aytes et al., 2014; see

Supplemental Experimental Procedures) to avoid potential bias

introduced by any individual model. The in vivo drug perturbation

data were analyzed by gene set enrichment analysis (GSEA)

(Subramanian et al., 2005) to assess the inhibition (i.e., reversion)

of FOXM1/CENPF shared target genes; analyses were per-
genes, thereby resulting in strong reversion. Scenario 2 illustrates two other drug

reversion.

(D) Heatmap representation depicting global synergistic reversion scores (GSRS

FOXM1/CENPF human target genes. GSRSs were calculated by combining the s

Supplemental Experimental Procedures). Heatmap intensity (blue) represents th

highest combined GSRS.

(E) Heatmap showing the relative expression levels of FOXM1/CENPF target ge

shown are genes that are not reverted (i.e., non-responsive) to these drugs.

Figure S1 is related to Figure 1; computational predictions of GRSs and GSRSs
formed separately for the mouse and human targets (Figure 1B).

Using GSEA, we obtained a normalized enrichment score (NES)

for each drug signature and each GEM model, which we define

as the reversion score (RSFOXM1/CENPF), to assess the com-

pound’s ability to inhibit FOXM1/CENPF activity in a specific

GEM model (Table S1). From these analyses, a global reversion

score (GRSFOXM1/CENPF) was assigned for each drug by inte-

grating each of the GEM-specific RSFOXM1/CENPF scores, using

a metric based on Stouffer’s integration formulation (Whitlock,

2005) (Figure 1B; Figure S1; Supplemental Experimental Proce-

dures). Thus, drugs that most effectively inhibit FOXM1/CENPF

activity are those having the most negative GRSFOXM1/CENPF.

Notably, FOXM1/CENPF target genes from either mouse or hu-

man yielded equivalent GRSFOXM1/CENPF (Figure 1B; Table S1),

indicating conservation of the predicted drug response between

mouse and human prostate cancer.

Among the individual drugs tested in the GEMmodels, the two

with the most significant negative GRSFOXM1/CENPF were rapa-

mycin and PD0325901. These drugs inhibit the PI3K/mTOR

and MAP kinase signaling pathways, respectively, which are

frequently dysregulated in advanced prostate cancer (Aytes

et al., 2013; Kinkade et al., 2008; Taylor et al., 2010). Specifically,

the GRSs for rapamycin wereGRSH =�13.9 (human targets) and

GRSM =�16.9 (mouse targets) and for PD0325901 were GRSH =

�8.1 andGRSM =�9.9 (Figure 1B; Table S1). In contrast to rapa-

mycin and PD0325901, other drugs including docetaxel, a stan-

dard-of-care chemotherapy for advanced prostate cancer

(Pienta and Smith, 2005), were not predicted to be effective for

inhibiting the FOXM1/CENPF regulon (GRSH = 5.8 and GRSM =

5.6; Figure 1B; Figure S1).

Systematic Inference of Drug Synergy
Next, we tested whether this computational approach could be

extended to infer drug combinations that cooperate to inhibit

MR activity, again using FOXM1 and CENPF as a proof of

concept. These analyses are based on the hypothesis that effec-

tive drug combinations should induce a more significant reversal

of MR-specific regulon expression, compared to the individual

drugs (Figure 1C; Supplemental Experimental Procedures).

Notably, such logic can be implemented based on individual

drug signatures, without requiring in vivo signatures from drug

combinations, which vastly increases the experimental effi-

ciency for prioritizing drug combinations based on in vivo pre-

clinical data.

To estimate a global synergistic reversion score (GSRS) for

each drug pair, we assessed the predicted reversion score for

all possible combinations of two drug treatments across each

of the GEM models. First, the synergistic reversion score (SRS)

was calculated for each GEM model as an harmonic mean
s that inhibit (i.e., revert) relatively few target genes, thereby resulting in weak

s) for each possible pair of drugs across the series of GEM models based on

ynergistic reversion scores for targets affected by the drug combinations (see

e predicted degree of reversion (GSRS); arrows indicate drug pairs with the

nes reverted by treatment with rapamycin or PD0325901 versus vehicle; also

are provided in Tables S1 and S2, respectively.
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Figure 2. Validation of Drug Efficacy, Synergy, and Specificity in Prostate Cancer Cells

(A) Real-time PCR of mRNA expression levels of FOXM1 and CENPF and their shared target genes following treatment with rapamycin and/or PD0325901 or

docetaxel in DU145 human prostate cancer cells (top) or NPK mouse prostate tumors (bottom).

(B and C) Colony formation assays in the indicated human prostate cancer cells, PC3, DU145, 22Rv1, and LNCaP, following treatment with rapamycin (Rap) and/

or PD0325901 (PD), or docetaxel (Doc). (B) Representative colony formation assays. (C) Quantification of independent assays performed in triplicate.

(legend continued on next page)
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(F-score) that first maximizes the number of unique targets

affected by each drug, and then the total number of targets

affected by both drugs (Figure 1C; Supplemental Experimental

Procedures). These analyses identified several combinations,

most of which included rapamycin or PD0325901, which were

predicted to be more effective than the individual compounds

based on their GSRSs (Figure 1D; Table S2). In particular, the ra-

pamycin + PD0325901 combination was predicted to have the

strongest global inhibition of the FOXM1/CENPF regulon, both

with respect to total number of targets affected by both drugs

and the number of unique targets affected by each drug, result-

ing in the most significant negative global synergistic reversion

score (GSRSH = �40.4; p value < 0.001 compared to a random

model; see Supplemental Experimental Procedures). This theo-

retical prediction was validated by assessment of FOXM1/

CENPF target genes that were reverted by rapamycin or

PD0325901 following drug treatment in vivo (Figure 1E).

Experimental Validation of Drug Specificity and Synergy
in Cell Culture
Based on these computational predictions, we performed exper-

imental validation to assess whether rapamycin and/or

PD0325901 specifically inhibit the FOXM1/CENPF regulon in

relevant mouse and human prostate cancer cell culture models,

and if so, whether these drugs affect cell growth and tumorige-

nicity in a FOXM1/CENPF-dependent manner. First, we vali-

dated the underlying computational prediction that treatment

with rapamycin and PD0325901 reverts the expression of shared

target genes of FOXM1/CENPF. Using real-time PCR, we found

that treatment with rapamycin and PD0325901, but not doce-

taxel, inhibited expression of both FOXM1 and CENPF as well

as their shared target genes in several human and mouse pros-

tate cancer models (Figure 2A; Figure S2A). This inhibition of

target genes was coincident with inhibition of the corresponding

signaling pathways, namely PI3K/mTOR and MAP kinase in the

mouse and human cells (Figures S2B and S2C). Notably, inhibi-

tion of colony formation was significantly greater when the

drugs were combined than when used individually (Figure 2B,

C), which supports the computational prediction of rapamycin +

PD0325901 synergy.

To address the specificity of the rapamycin + PD0325901 drug

combination for inhibition of FOXM1/CENPF activity, we as-

sessed whether this combination was preferentially more potent

in contexts having high levels of FOXM1/CENPF activity. First,

we surveyed the expression and activity of FOXM1/CENPF in a

series of human and mouse cell lines; ‘‘activity’’ was determined

experimentally by analyses of the expression of FOXM1/CENPF

shared target genes (Figure 2D; Figures S2D–S2F). These

studies revealed that PC3 cells have the highest levels of

FOXM1/CENPF activity, whereas LNCaP cells have lower levels

(Figure 2D). Correspondingly, human prostate cancer cells with

higher levels of FOXM1/CENPF activity had greater response
(D) (Left) Relative activity of FOXM1/CENPF in human prostate cancer cells lines. A

target genes (see Figure S2F). (Right) Relative drug response assessed for FO

treatment with rapamycin + PD0325901 (Rap + PD) or docetaxel (Doc). Differen

indicated, p values are represented as *p < 0.01, **p < 0.001, and ***p < 0.0001.

Figures S2 and S3 are related to Figure 2.
to rapamycin + PD0325901 treatment, as evident from the strong

inhibition of activity and colony formation, whereas LNCaP cells,

which have low levels of FOXM1/CENPF activity, had a modest

response to rapamycin + PD0325901 (Figures 2B–2D). In

contrast, this relationship to FOXM1/CENPF activity was not

observed following docetaxel treatment of these cells (Figures

2B–2D). Similar findings were observed in mouse prostate can-

cer cells wherein response to rapamycin + PD0325901 treatment

was correlated with the relative levels of FoxM1/Cenpf activity

(Figures S2D and S2E).

Moreover, the dependence on FOXM1/CENPF in the human

prostate cancer cells was evident by the reduction in the

half maximal inhibitory concentration (IC50) for rapamycin +

PD0325901, but not docetaxel, following the silencing of both

FOXM1 and CENPF in human prostate cancer cell lines with

high levels of activity (Figure S3). Conversely, overexpression of

FOXM1 and CENPF in a non-prostate cancer cell line, HEK293,

resulted in an increase in the IC50 for rapamycin + PD0325901,

but not docetaxel (Figure S3). Taken together, these findings vali-

date the computational prediction that FOXM1/CENPF activity is

specifically inhibited by rapamycin + PD0325901.

Experimental Validation of Drug Efficacy and Specificity
In Vivo
The synergistic effects of combined treatment with rapamycin +

PD0325901 were even more dramatic in vivo. In particular, we

performed preclinical studies using NPK mice (Nkx3.1CreERt2;

Ptenflox/flox; KrasLSL-G12D/+), which model aggressive, metastatic

prostate cancer that is dependent on FOXM1/CENPF activity

(Aytes et al., 2013, 2014). Tumor-bearing NPKmice were treated

with rapamycin and/or PD0325901, or docetaxel, for 5 days (i.e.,

the dynamic response cohort) or 1 month (i.e., the therapeutic

response cohort) (Figure 3A; Table S3). Mice were then either

sacrificed for analysis or monitored for the effects of drug treat-

ment on survival and metastasis (i.e., the survival response

cohort) (Figure 3A; Table S3).

Whereas treatment with either drug individually had a modest

therapeutic benefit at the various endpoints, the combination of

rapamycin + PD0325901 had a profound effect at all tumor end-

points in the therapeutic response cohort (Figures 3B–3E). In

particular, treatment with rapamycin + PD0325901, but not do-

cetaxel, resulted in profound abrogation of the histological

phenotype, coincident with inhibition of relevant signaling path-

ways, as evident by immunohistochemistry (Figure 3B). More-

over, tumors treated with rapamycin + PD0325901, but not do-

cetaxel, displayed a significant decrease in cellular proliferation

(p < 0.0001) (Figure 3C), as well as significant reduction in tumor

burden, as measured by tumor weight (p = 0.003) and tumor vol-

ume using MRI (p < 0.01) (Figures 3D and 3E). Furthermore,

these effects on phenotype and tumor burden were accompa-

nied by a significant improvement in survival (p < 0.0001) (Fig-

ure 3F), as well as a 3-fold reduction in the incidence of
ctivity levels were calculated based on expression levels of 10 FOXM1/CENPF

XM1/CENPF activity levels in the human prostate cancer cell lines following

ces between treatment groups were assessed using Student’s t test. When

Bars represent mean ± SD.
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Figure 3. Validation of Drug Synergy and Specificity In Vivo

(A) Shown is the design of preclinical studies. NPKmice were induced to form tumors by delivery of tamoxifen at 2 months of age as in (Aytes et al., 2013). Mice

were treated with rapamycin and/or PD032590, or docetaxel for 5 days (dynamic response cohort) or 1 month, following which mice were sacrificed for analyses

(therapeutic response cohort) or monitored for survival (survival response cohort).

(B–E) Analysis of the therapeutic response cohort following treatment with rapamycin (Rap) and/or PD0325901 (PD) or docetaxel (Doc) as indicated (n = 5 mice/

treatment group). (B) Representative sections of H&E staining or immunohistochemical staining for the indicated markers of the PI3K/mTOR or MAP kinase

signaling pathways; scale bars represent 100 mm. (C) Relative cellular proliferation following drug treatment as determined by the percent of Ki67-positive cells

relative to total epithelial cells. (D) Prostateweight (in grams) following drug treatment. (E) Longitudinal MRI imaging showing representative images following drug

treatment with tumor volumes indicated. The panel to the right represents the net change in tumor volume following 1 month of drug treatment.

(F–H) Shown is analysis of the survival response cohort. (F) Survival analysis showing the improvement in survival following treatment with rapamycin and

PD0325901 (Rap + PD) compared with the vehicle-treated mice. (G) Percentage of mice with disseminated cells in the bone marrow and (H) percentage of mice

with lung metastases following treatment with vehicle (Veh) or rapamycin + PD0325901 (Rap + PD) (n = 10 mice/treatment group). Differences between groups

were assessed using Student’s t test; bars represent mean ± SD. In (F), p value corresponds to a log-rank test.
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disseminated tumor cells in the bonemarrow and a 4-fold reduc-

tion in the incidence of lung metastases (Figures 3G and 3H).

Together, these findings validate the concept that treatment

with rapamycin + PD0325901 inhibits growth of FOXM1/

CENPF-dependent tumors.

Relationship of Mouse Drug-Treatment Signatures to
Human Cancer
Given the striking reduction in tumor and metastatic burden

following treatment with rapamycin + PD0325901, we evaluated
6 Cell Reports 12, 1–12, September 29, 2015 ª2015 The Authors
whether this combination might be sufficient to broadly inhibit

molecular processes associated with advanced, FOXM1/

CENPF-dependent prostate cancer. We addressed this ques-

tion by analyzing signatures obtained by differential gene

expression analysis of NPK prostate tumors treated with vehicle

or rapamycin + PD0325901 for 1 month (i.e., the therapeutic

response cohort; Table S3), which resulted in extensive abroga-

tion of the tumor phenotype (see Figure 3). We compared this

‘‘therapeutic response’’ signature to a reference mouse ‘‘tumor’’

signature, corresponding to differential gene expression
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between phenotypically wild-type prostates and NPK prostate

tumors, which captures the transition from normal prostate to

fully malignant prostate cancer (Table S3). Strikingly, genes

that were differentially expressed in the therapeutic response

signature were strongly negatively enriched in the mouse tumor

signature (NES = �8.58; p < 0.001) (Figure S4A). Further evi-

dence that rapamycin + PD0325901 treatment results in broad

inhibition beyond their respective target signaling pathways

was provided by biological pathway analysis. In particular, path-

ways that were significantly inhibited (i.e., reverted) following

treatment of the NPK tumors with rapamycin + PD0325901,

but not docetaxel, include several that are important for tumor

progression and are not directly related to mTOR/PI3K/MAP ki-

nase signaling (Figure 4A; Table S4).

To evaluate molecular processes that are inhibited immedi-

ately following drug treatment, we analyzed a ‘‘dynamic

response’’ signature, representing a time point wherein the

drugs are active but the tumor phenotype has not yet been abro-

gated (Figure 3A; Table S3; and data not shown). In particular,

this short-term treatment with rapamycin + PD0325901 resulted

in reversion of FOXM1/CENPF targets, as predicted by our

computational approach (Figure S4B; see Figure 1E). Compari-

son of this ‘‘dynamic response’’ signature to a reference mouse

‘‘malignancy signature,’’ based on comparison of non-malignant

prostate tumors from NP mice to fully malignant NPK tumors

(Aytes et al., 2013), revealed a striking negative enrichment

(i.e., strong reversion) (NES = �8.34; p < 0.001) (Figure 4B), sug-

gesting that the rapamycin + PD0325901 combination inhibits

molecular processes associated with NPK tumor malignancy

even prior to their overt effects on the tumor phenotype.

To assess conservation of these molecular changes with

human prostate cancer, we performed GSEA to compare a hu-

manized version of the mouse dynamic response signature

with human prostate cancer signatures (see Supplemental

Experimental Procedures). We used three independent human

prostate cancer signatures, each of which is based on distinct

clinical endpoints (Table S3): (1) a malignancy signature based

on the Taylor dataset (Taylor et al., 2010), which compares pa-

tients having low Gleason score and no biochemical recurrence

(n = 39) to those with high Gleason score and a short time to

biochemical recurrence (n = 10) (Aytes et al., 2013); (2) a metas-

tasis signature based on the Balk dataset (Stanbrough et al.,

2006), which compares hormone-naive prostate tumors (n =

22) to bone metastases from castration-resistant prostate can-

cer (n = 29) (Aytes et al., 2014); and (3) a survival signature based

on the Sboner dataset (Sboner et al., 2010), which compares

transurethral resections from patients who survived for nearly

200 months (n = 12) to those who died of prostate cancer within

12 months (n = 6) (Wang et al., 2013). Strikingly, the mouse dy-

namic response signature was strongly negatively enriched

when compared with each of these human signatures, indicating

that genes that are consistently overexpressed in aggressive

prostate cancer are inhibited following drug treatment (Taylor

signature NES = �5.48, p < 0.001; Balk signature NES =

�5.26, p < 0.001; and Sboner signature NES = �6.40, p <

0.001) (Figure 4C). In contrast, the docetaxel treatment response

signature was either minimally or not negatively enriched in these

human signatures (Figure S4C).
We then asked whether the mouse dynamic response signa-

ture could reverse a ‘‘FOXM1/CENPF activity’’ signature in hu-

man prostate cancer. This FOXM1/CENPF activity signature,

defined using the Sboner dataset (Sboner et al., 2010), corre-

sponds to differential gene expression between patient samples

having low versus high levels of FOXM1/CENPF activity, which

was measured by enrichment of the FOXM1/CENPF regulon in

each patient using single-sample master regulator inference al-

gorithm (ssMARINa) as in Aytes et al. (2014) (see Supplemental

Experimental Procedures). GSEA comparing the ‘‘FOXM1/

CENPF’’ activity signature with the mouse ‘‘dynamic response’’

signature showed strong negative enrichment (NES = �6.43,
p < 0.001) (Figure 4D), which supports the concept that patients

with high levels of FOXM1/CENPF activity should respond more

effectively to rapamycin + PD0325901 treatment. Notably,

similar comparison with a docetaxel treatment response signa-

ture did not indicate such relationship (NES = 0.37, p = 0.77)

(Figure S4D).

We further evaluated the correlation between FOXM1/CENPF

activity levels and predicted treatment response in each patient

in the Sboner dataset estimated using ssMARINa and GSEA,

respectively. We found that inferred FOXM1/CENPF activity

levels and predicted treatment response were strongly corre-

lated (Spearman’s rho = 0.51, p < 2.23 10�16) (Figure 4E), which

was not the case for the docetaxel treatment response (Fig-

ure S4E). Taken together, these computational analyses suggest

that the molecular programs (i.e., genes and pathways) specif-

ically inhibited (reverted) by rapamycin + PD0325901 in the

mousemodel are conserved with those that drive aggressive hu-

man prostate cancer, and in particular in patients having high

levels of FOXM1/CENPF activity.

Conservation of Treatment Response in Mouse
and Human Prostate Cancer
Given the conservation in the molecular programs affected by

drug treatment in the GEM models and human prostate cancer,

we next asked whether we could use the mouse treatment

response signature to identify genes predicted to be associated

with treatment response in humans. First, we identified candi-

date rapamycin + PD0325901-responsive genes by interro-

gating the mouse prostate cancer interactome (Aytes et al.,

2014) with the dynamic response signature using the standard

MARINa algorithm to identify MRs of treatment response in the

mouse (Lefebvre et al., 2010). We then compared these MRs

with the orthologous human genes to identify those predicted

both to be regulated by FOXM1/CENPF in human prostate can-

cer and to be downregulated by drug treatment; we refer to these

as ‘‘predicted treatment-responsive genes’’ and distinguish

them from other FOXM1/CENPF target genes that are not pre-

dicted to be responsive to the treatment (Figure 5A). Notably,

real-time PCR analyses confirmed that the expression levels of

these predicted treatment-responsive genes were indeed in-

hibited by rapamycin + PD0325901 in human prostate cancer

cell lines, whereas the expression levels of the predicted

non-responsive genes were not inhibited by such treatment

(Figure 5B).

These treatment-responsive genes (including TOP2A,UHRF1,

ASF1B, MCM4, WHSC1, MCM2, SUV39H1, BLM, BRCA1,
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Figure 4. Cross-Species Analyses of Drug-Treatment Response

(A) Heatmap depiction showing representative pathways that are significantly changed following treatment with rapamycin + PD0325901 (Rap + PD) or docetaxel

(Doc) relative to vehicle treatment (Veh). Pathway analysis was done by GSEA using a ‘‘humanized’’ version of the dynamic response allograft tumor signature

(see Table S3 and Supplemental Experimental Procedures). A complete list of pathways is provided in Table S4.

(B–D) GSEA using as the query gene set themouse rapamycin + PD0325901 dynamic treatment response signature (B) or a ‘‘humanized’’ version of this signature

(C and D); normalized enrichment score (NES) and associated p values are shown. In (B), the reference is mouse ‘‘malignancy’’ signature, which represents

differentially expressed genes from NP versus NPKmouse tumors as reported previously (Aytes et al., 2013). In (C), the references are three independent human

tumor signatures (i.e., Taylor, Balk, or Sboner), each of which compare differentially expressed genes representing less aggressive versus more aggressive

prostate cancer specimens (Table S3). In (D), the reference signature represents differentially expressed genes in patients from the Sboner dataset having low

versus high levels of FOXM1/CENPF activity, which was inferred using single sample MARINa (ssMARINa) (see Supplemental Experimental Procedures).

(E) Heatmap showing the correlation in human patients from the Sboner dataset of FOXM1/CENPF activity levels (top) with the corresponding predicted drug-

treatment response for rapamycin + PD0325901 (bottom). As above, FOXM1/CENPF activity was estimated for each patient using ssMARINa. The treatment

response for each patient was inferred using a ‘‘humanized’’ version of the mouse dynamic treatment signature using GSEA (see Supplemental Experimental

Procedures). Correlation coefficient (rho) and associated p value were estimated using Spearman’s correlation.

Figure S4 and Tables S3 and S4 are related to Figure 4.
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Figure 5. Conservation of Treatment Responsive Genes in Human Prostate Cancer

(A) FOXM1/CENPF subnetwork of human target genes predicted to be responsive or non-responsive to treatment with rapamycin + PD0325901 based on

comparison with treatment response for themousemodel. Relative change in activity following drug treatment is indicated by levels of ‘‘blue’’ for genes predicted

to be reverted by the drugs and levels of ‘‘red’’ for those predicted to be activated or unaffected (i.e., non-responsive).

(B) Real-time PCR showing the actual change in expression levels of FOXM1/CENPF target genes following treatment with vehicle or rapamycin + PD0325901.

The ‘‘predicted treatment-responsive genes’’ correspond to those represented by the blue circles in (A), and the ‘‘predicted non-responsive genes’’ to the other

genes. PCR was done using DU145 cells; differences were assessed using t test (p values are represented as *p < 0.01, **p < 0.001, and ***p < 0.0001) and bars

represent mean ± SD.

(C–E) Association of predicted treatment-responsive genes with lethal prostate cancer and disease outcome. (C) Summary table showing the significance of

elevated expression levels in metastases versus primary tumors in the Taylor and Balk datasets (columns on the left; p value was calculated using t test). The

column on the right shows a COX regression model indicating the association based on master regulator activity levels of the predicted treatment-responsive

genes with prostate cancer-specific survival estimated for patients in the Sboner dataset; COX p value was calculated using Wald test (NA, sufficient targets not

represented; NS, not significant). (D) Oncoprint visualization from cBioportal showing the percent of alterations of the predicted treatment-responsive genes in

metastases samples from the Taylor dataset. (E) Heatmap showing the master regulator activity levels of treatment-responsive genes in primary tumors versus

bone metastases from the Balk dataset.

(F) Heatmap comparing themaster regulator activity levels of the treatment-responsive genes (upper rows) across each patient in the Sboner datasetwith inferred

treatment response for each patient (Rap +PD, bottom row). The activity levels and the treatment response for each patient were estimated using single-sample

MARINa (ssMARINa) and GSEA, respectively (see Supplemental Experimental Procedures). The correlation between the average activity levels of all treatment-

responsive genes and the predicted response was estimated using Spearman’s correlation.

(G) Kaplan-Meier survival analysis based on the master regulator activity levels of predicted treatment-responsive genes in the Sboner dataset using prostate

cancer-specific survival as the endpoint. The p value was estimated using a log-rank test of the difference in outcome between patients with higher activity levels

(red) and those with lower/no activity (blue).
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CCNA2, E2F1, andMYBL2) have known functions in DNA repair,

epigenetic modifications, cell cycle, proliferation, and/or sur-

vival, which are all associated with cancer malignancy. Notably,

each of these is overexpressed in advanced human prostate

cancer, and their activity levels are associated with disease

outcome, as shown by univariate analyses using a COX propor-

tional hazard model on the Sboner dataset (Figures 5C and 5D).

Moreover, analyses based on the Balk dataset revealed robust

activity levels of the treatment-responsive genes in metastatic

samples compared to primary tumors (Figure 5E).

We further demonstrated the association of the activity levels

of the treatment-responsive genes with drug response on a pa-

tient-by-patient basis, estimated using ssMARINa and GSEA,

respectively, on the Sboner dataset (Figure 5F). In particular,

the average activity levels of treatment-responsive genes were

strikingly correlated with the rapamycin + PD0325901 drug

response (Spearman rho = 0.57, p < 2.2 3 10�16) (Figure 5F),

similar to that observed for the FOXM1/CENPF activity (see Fig-

ure 4D). Most notably, multivariate Kaplan-Meier survival anal-

ysis on the Sboner dataset to evaluate disease-specific survival

revealed that patients with higher activity levels of the treatment-

responsive genes have a shorter time to prostate cancer-spe-

cific death compared to patients with lower activity levels

(log-rank p value = 1.7 3 10�5) (Figure 5G). Importantly, the ac-

tivity of the treatment-responsive subnetwork of the FOXM1/

CENPF regulon was more significant than the FOXM1/CENPF

regulon (log-rank p value = 1.3 3 10�4) and also outperformed

a random comparable set of genes with respect to the COX pro-

portional hazard model (p value for improvement < 0.001) and

Kaplan-Meier survival analysis (p value for improvement <

0.015) (see Supplemental Experimental Procedures). Taken

together, these findings suggest that computationally predicted

treatment-responsive genes can be used to identify patients that

are likely to benefit from treatment with drugs that co-target the

PI3K/mTOR and MAP kinase signaling pathways and provide a

proof of concept for the overall approach.

DISCUSSION

In this study, we introduce a generalizable computational

approach to extrapolate in vivo preclinical treatment data from

GEMmodels to inform on human cancer treatment. Our method

infers drug efficacy based on the ability of a given drug to revert

the transcriptional regulon of key dependencies that drive the tu-

mor phenotype. Importantly, we show that this method can be

used to prioritize drug combinations based on analysis of individ-

ual compounds, which greatly enhances the value of in vivo pre-

clinical analyses of compounds in mice. We demonstrate this

approach with a proof-of-concept study based on identification

of drugs and drug combinations that inhibit the activity of

FOXM1/CENPF, which were chosen for their established rele-

vance for lethal prostate cancer (Aytes et al., 2014). However,

this approach should be applicable to identify candidate drugs

and drug combinations for many other driver gene(s) of interest

and not limited to prostate cancer. Notably, the molecular pro-

grams affected by drug treatment in the GEM model are well

conserved with human prostate cancer, which supports the

concept that analyses of drug-treatment data from mouse
10 Cell Reports 12, 1–12, September 29, 2015 ª2015 The Authors
models can be used to identify treatment-responsive genes for

human prostate cancer. Thus, we have described a method to

identify drugs and drug combinations that specifically inhibit

cancer driver genes, as well as to identify potential biomarkers

to predict the efficacy of drug treatments for individual patients.

Several features of our approach distinguish it from other stra-

tegies previously used to screen for drug response in human

cancer. First, most other approaches have been based on ana-

lyses of cancer cell lines in culture (e.g., Barretina et al., 2012;

Garnett et al., 2012), whereas our study is based on drug pertur-

bation of GEMmodels in vivo. Thus, we evaluate drug efficacy in

the context of the native tumor microenvironment and intact im-

mune system, which are now widely recognized as being essen-

tial for drug response in vivo, particularly given recent advances

in immunotherapy. Although the tumor context of any individual

GEMmodel is unlikely to fully recapitulate that of human cancer,

we address this limitation by analyzing multiple distinct GEM

models to avoid idiosyncratic GEM-specific biology. Indeed,

we have observed a remarkable concordance of the molecular

consequences of drug treatment between our ‘‘consensus’’ an-

alyses of mouse models and human prostate cancer.

A second distinguishing feature of our approach is its ability to

identify synergistic drug combinations based on single-agent

treatment data. From a practical standpoint, the number of drugs

that can be feasibly evaluated using in vivo perturbations in a se-

ries of GEM models is limited. Therefore, the ability to evaluate

the efficacy of drug combinations by profiling a relatively small

number of single drugs (e.g., the 100 most relevant compounds)

would allow assessment of a very large potential combination

therapy space (e.g., 4,950 combinations), thus affording signifi-

cant economy of scale.

A third important feature is that our computational method

identifies drugs based on their ability to inhibit specific drivers

of the tumor phenotype, rather than on overall toxicity or inhibi-

tion of more general tumor-related parameters. In particular,

the method evaluates the efficacy of drug response based on in-

hibition of the transcriptional regulon of specific master regula-

tors of interest. Furthermore, our computational analysis of treat-

ment response in the GEM models in vivo has also identified

treatment-responsive genes that are conserved in human pros-

tate cancer. We propose that such treatment-responsive genes

may serve as surrogate biomarkers to infer the potential efficacy

of drug treatments in patients. In particular, our current findings

suggest that previous analyses may have underestimated the

value of molecular inference of preclinical data from GEM

models for not only predicting optimal drug combinations but

also identifying molecular markers for predicting treatment

response to such drugs.

The PI3K/mTOR and MAP kinase signaling pathways are

known to be dysregulated in many advanced prostate cancers

(Aytes et al., 2013; Kinkade et al., 2008; Taylor et al., 2010).

Currently, drugs that target these pathways (albeit not rapamycin

and PD0325901) are being evaluated in numerous clinical trials

for prostate cancer and many other solid tumors, including com-

bination-therapy regimes. Results from the current study as well

as previous work (Aytes et al., 2014) suggest that aberrant levels

of FOXM1 and CENPF, as assessed by immunostaining of tumor

samples, may identify patients who would likely benefit from
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treatment with agents that target the PI3K/mTOR and/or MAP ki-

nase signaling pathways. In addition, our study suggests that the

treatment-responsive genes we have identified could provide

intermediate biomarkers to assess short-term efficacy of combi-

nation therapy in patients, a strategy that can be readily general-

ized to other targets and therapies. Thus, our studies may inform

or modulate the design of clinical trials or help provide a mech-

anistic basis for clinical findings.

Beyond prostate cancer, our computational methodologymay

be beneficial to identify drugs that target key actionable targets

in vivo for a wide range of tumor types, oncogene and non-onco-

gene dependencies, and therapeutic agents, including both US

Food and Drug Administration-approved and experimental com-

pounds. Since many cancer types now have relevant GEM

models that are being used in many preclinical studies, it would

be advantageous to use our approach to apply these preclinical

data from GEMs to analyze treatment response in human

cancer.

EXPERIMENTAL PROCEDURES

Computational Prediction of Drug Synergy

Computational inference of drugs that inhibit FOXM1 and CENPF activity was

done using their shared target genes predicted from the mouse or human

prostate cancer interactomes and using in vivo drug perturbation data, which

were described previously (Aytes et al., 2014). Target gene reversion (i.e., inhi-

bition) was assessed using GSEA for each drug across each GEM model.

GRSs for each drug were then inferred by integrating the reversion scores

across each GEM model using a metric based on the Stouffer integration

formulation (Whitlock, 2005). Optimal drug combinations were predicted

from the single-agent in vivo drug perturbation data by determining the

SRSs for each drug using an harmonic mean (F1 statistical measure), which

maximizes the number of unique targets affected by each drug as well as

the total number of targets affected by two drugs. GSRSswere then estimated

as an average SRS weighted by the number of mouse models in which a drug

pair was estimated to be effective (i.e., to share a non-zero SRS). Details of the

computational methods used to compute GRSs and GSRSs are provided in

Supplemental Experimental Procedures, and the data are provided in Tables

S1 and S2.

Efficacy of Drug Treatment

All experiments using animals were performed according to protocols

approved by the Institutional Animal Care and Use Committee at Columbia

University Medical Center. Cell culture studies were done as described previ-

ously (Aytes et al., 2014) using human prostate cancer cell lines obtained from

ATCC and mouse cell lines derived from the GEM models used herein (Aytes

et al., 2013; unpublished date). Rapamycin and docetaxel were purchased

from LC Laboratories, and PD0325901 was provided by Pfizer. Cell culture as-

says were performed in a minimum of two independent experiments each

done in triplicate; data are presented by the mean ± SD. For in vivo studies, tu-

mor-bearing NPK mice (Aytes et al., 2013) or allografted NPK tumors were

treated with vehicle or rapamycin (10 mg/kg) and/or PD0325901 (10 mg/kg)

or docetaxel (10 mg/kg) as described previously (Kinkade et al., 2008). At

the time of sacrifice, tissues were collected for histopathological and molecu-

lar analysis as described elsewhere (Aytes et al., 2013; Kinkade et al., 2008).

GraphPad Prism software (version 5.0) was used for statistical analyses and

to generate data plots. A complete list of primers used in this study is provided

in Table S5.

Cross-Species Computational Analysis of Drug-Treatment

Signatures

Gene expression profiles based on Illumina expression arrays as in Aytes et al.

(2014) were used to generate drug-treatment signatures for the mouse tumors

or allografts, as detailed in Table S3. For comparison of mouse treatment sig-
natures with human signatures, the mouse genes were mapped to their corre-

sponding human orthologs. Single-sample computation of FOXM1/CENPF

activity levels or drug treatment across human patients was inferred for each

patient sample using single-sample MaRINA (ssMARINa) and GSEA, respec-

tively (Aytes et al., 2014) (see Supplemental Experimental Procedures). COX

proportional hazard model and Kaplan-Meier analysis were done using the

‘‘surv’’ and ‘‘coxph’’ functions from the survcomp package in R v2.14.0.
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