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INTRODUCTION
Systematic prediction of drug efficacy in vivo remains 

a major clinical challenge for most cancer types due, in 
part, to tumor heterogeneity, which makes it difficult to 
optimize treatments on an individual basis. This is further 
compounded by difficulties in establishing patient-derived 
models that recapitulate the biology and complexity of an 
individual patient’s tumor for coclinical validation. Indeed, 
for some tumor types, the establishment of patient-derived 
xenograft (PDX) models can take more than 1 year (1, 
2), thus compromising their usefulness for evaluating 

drug efficacy within a timeframe compatible with patient 
care, especially in the metastatic setting. Patient-derived 
organoid (PDO) models have become increasingly more 
accessible and representative; however, these may not effec-
tively model the tumor microenvironment (3, 4). Although 
human tumor cell lines are widely available for many can-
cer types, they rarely represent the full spectrum of tumor 
phenotypes observed in patients and often have idiosyn-
cratic dependencies, as a result of alterations they accrue 
to survive in vitro. In principle, genetically engineered 
mouse models (GEMM), which are now widely available 
for many cancer types (5), may be valuable for studying 
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drug response in the whole organism in the context of the 
native tumor microenvironment. However, their effective 
use in coclinical studies requires an accurate assessment 
of their fidelity to their human counterparts in terms of 
recapitulating the biology and drug sensitivity of patient 
tumors (6).

These challenges are exemplified in prostate cancer, which 
remains the most prevalent form of cancer and a leading 
cause of cancer-related death in men (7). Prostate cancer is 
characterized by its wide range of disease outcomes; indeed, 
whereas men with locally invasive disease—accounting for the 
vast majority of new diagnoses—have a 5-year survival rate 
of  >90%, those who progress to advanced prostate cancer 
have a 5-year survival rate of <30%. The first-line treatment 
for advanced prostate cancer is androgen deprivation therapy, 
which initially leads to tumor regression but ultimately to the 
emergence of castration-resistant prostate cancer (CRPC), 
which is often metastatic (mCRPC; refs. 8–10). Stand-
ard-of-care second-line treatments include taxane-based 
chemotherapy, such as cabazitaxel, and second-generation 
antiandrogens, such as enzalutamide; although these may 
be initially effective, many patients fail treatment, leading to 
the emergence of highly aggressive disease variants, includ-
ing neuroendocrine prostate cancer (NEPC; refs. 11, 12). 
Challenges in treating advanced prostate cancer include its 
inherent heterogeneity, the infrequency of driver mutations, 
and its long mutational tail (13), which make it difficult to 
determine a priori whether specific treatments are likely to be 
effective for any given patient. Furthermore, although there is 
an abundance of mouse models of prostate cancer (14), it has 
proven difficult to model human prostate cancer because the 
establishment of PDX and PDO models has been low yield, 
especially for advanced disease (15–19).

To overcome these challenges, we developed OncoLoop, a 
framework that integrates experimental and computational 
data to first identify high-fidelity models for a given human 
tumor (cognate model, hereafter), then predict optimal drug 
treatments for the patient and its cognate model based on 
large-scale drug perturbation profiles, and lastly validate 
drug efficacy using the cognate model. The rationale for 
OncoLoop is based on previous studies where we have shown 
that Master Regulator (MR) proteins represent mechanistic 
determinants of a tumor’s transcriptional state and that 
MR-activity inversion effectively abrogates tumor viability 
(20–22). Thus, cognate models for a given patient are identi-
fied by assessing the conservation of MR protein activity for 
a patient and potential cognate models (23, 24); conversely, 
optimal drugs are prioritized based on their ability to invert 
the MR-activity signature of both a patient tumor and its 

cognate models (21). Hence, OncoLoop identifies the most 
statistically significant three-way relationships encompassing 
a tumor, its highest fidelity cognate model(s), and one or more 
drugs predicted to invert the MR-activity signature of both 
tumor and cognate models (hereafter, MR-inverter drugs).

As a proof of concept, we established OncoLoop in the 
context of prostate cancer, for which both large-scale human 
patient cohorts—comprising both primary tumors and metas-
tases (25, 26)—and an extensive repertoire of GEMMs (ref. 14 
and this report) are available. Indeed, MR-conservation analy-
sis revealed that a majority of patients in these cohorts were 
represented by at least one cognate GEMM-derived tumor 
(GEMM-DT). To identify MR-inverter drugs, we leveraged 
PanACEA (27), a large collection of drug perturbation pro-
files in cell lines matched to 23 tumor subtypes, including 
prostate cancer cell lines. Three out of four predicted drugs 
prioritized by our analyses induced highly significant growth 
inhibition of tumor allografts from cognate GEMM-DTs  
in vivo. We further show that the predicted drugs are active in 
the castration-resistant contexts and enhanced the efficacy of 
the second-generation antiandrogen enzalutamide. Notably, 
we assessed the contribution of MR-inverter drugs toward 
rescuing inflammatory pathway activity and immunosensi-
tivity—especially in the challenging and translationally rele-
vant metastatic setting—by further validating predicted drugs 
in a cognate syngeneic model of metastasis in combination 
with a PD1 inhibitor, nivolumab. Finally, to confirm rel-
evance to a human context, we further validated the predicted 
drugs in a cognate prostate cancer PDX tumor model. Taken 
together our findings show that OncoLoop provides an effec-
tive framework for the rapid identification and evaluation of 
patient-relevant drugs in preexisting cognate models, thus 
supporting its coclinical application. OncoLoop is a highly 
generalizable framework that can be extended to other can-
cers and potentially other diseases.

RESULTS
Conceptual Overview of OncoLoop

We developed OncoLoop for the purpose of identifying 
drugs poised to benefit patients, whose response could be 
evaluated in preexisting coclinical models (Fig. 1A). OncoLoop 
leverages regulatory networks reverse-engineered from large, 
tumor-specific RNA-seq profile datasets to first identify cog-
nate models (i.e., GEMM-DTs) based on conservation of 
their MR-activity signature with a human tumor. In a second 
step, candidate MR-inverter drugs are prioritized by assessing 
their ability to invert the MR-activity signature of both the 
human tumor and its cognate GEMM-DTs based on drug 

Figure 1.  The OncoLoop conceptual framework. A, Conceptual overview: OncoLoop was designed to identify high-fidelity (cognate) models—in this 
study, GEMM-DTs—of a patient’s tumor as well as drugs capable of inverting the MR protein activity for both the patient and their cognate GEMM-DT. 
To accomplish this, OncoLoop performs integrative analysis of transcriptomic (RNA sequencing) profiles from a patient’s tumor, their cognate model, and 
drug perturbation assays. B, Regulatory network analysis: Gene expression profiles generated from each data source are used to reverse engineer species- 
and cohort-specific regulatory networks, which are then used to transform differential gene expression signature into differential protein activity profiles. 
C, OncoLoop analysis: Gene set enrichment analysis (GSEA) is used to assess the overlap in differentially active MR proteins between a human tumor and 
its cognate GEMM-DTs (OncoMatch). Similarly, GSEA is used to identify drugs capable of inverting the MR activity (MR-inverter drugs) for each patient 
and cognate GEMM-DT(s) pair. D, Drug prediction and validation: Representative Circos plot illustrating PGD-loops generated by matching a patient (P) 
to a GEMM-DT (G) and connecting them to each shared MR-inverter drug (D). Candidate drugs are first prioritized by pharmacotype analysis to identify 
the subset of patients predicted to be sensitive to the same subset of drugs and then validated in vivo using a cognate GEMM-DT–derived allograft, 
a syngeneic model of metastasis and a PDX model. (Created with BioRender.com.)
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perturbation profiles of MR-matched tumor cell lines. Finally, 
the efficacy of predicted drugs is validated in vivo using the 
cognate models. We have established OncoLoop based on 
prostate cancer, for which we have generated a comprehensive 
series of GEMMs; however, for other cancer types, PDX mod-
els may be used if large, representative collections are available.

Data Generation

We leveraged large-scale RNA sequencing (RNA-seq) pro-
files from (i) our comprehensive series of GEMMs represent-
ing a broad spectrum of prostate cancer phenotypes (this 
study); (ii) publicly available RNA-seq profiles from primary 
tumors in The Cancer Genome Atlas (TCGA; ref.  25) and 
metastases in the Stand Up To Cancer–Prostate Cancer Foun-
dation (SU2C; ref. 26) cohorts; (iii) large-scale drug perturba-
tion profiles from MR-matched tumor cell lines (ref. 27 and 
this study); and (iv) RNA-seq profiles from well-characterized 
human prostate cancer PDX models (this study; Fig. 1B).

Protein Activity Analysis

OncoLoop requires accurate protein activity assessment 
for appraisal of MR-activity signatures, identification of cog-
nate models, and prediction of MR-inverter drugs. This is 
accomplished using the VIPER algorithm (23), which trans-
forms RNA-seq profiles into accurate protein activity profiles, 
as recently validated by antibody-based protein abundance 
measurements (28). Akin to a highly multiplexed gene 
reporter assay, VIPER uses the expression of a protein’s tissue-
specific targets (regulon) to measure its activity. The repertoire 
of targets of all regulatory and signaling proteins in a specific 
tissue context (i.e., context-specific interactome) is generated 
by reverse engineering large-scale, tissue-specific RNA-seq 
profiles using the ARACNe algorithm (29). Notably, to sup-
port accurate, model-specific protein activity measurements, 
we generated separate interactomes from patient-, GEMM-, 
and PDX-specific RNA-seq datasets (Fig. 1B).

GEMM Cohort Characterization and Cognate 
Model Identification

First, we analyzed VIPER-based protein activity profiles 
from the GEMM-DTs to identify molecularly distinct sub-
types and to demonstrate their relevance to the disease spec-
trum of human prostate cancer. Next, we identified cognate 
GEMM-DTs, based on MR-activity signature conservation, 
for individual human primary prostate cancer tumors and 
metastases in the TCGA and SU2C cohorts, respectively 
(Fig.  1C). This revealed broad coverage, in which 78% and 
93% of tumors and metastases were matched to at least one 
cognate GEMM-DT, respectively.

Assessing Drug Mechanism of Action in MR-Matched 
Cell Lines

To predict drug sensitivity, we leveraged human tumor–
relevant drug perturbation profiles generated for two pros-
tate cancer cell lines—the androgen-dependent LNCaP and 
the androgen-independent DU145 cell lines—that jointly pro-
vide high-fidelity models for >80% of the tumors in the TCGA 
cohort based on MR-activity signature conservation (ref. 27 
and this study). To focus on patients with the more aggressive 

mCRPC, we relied on RNA-seq profiles of DU145 cells that 
had been treated with a library of FDA-approved and late-
stage experimental oncology drugs (i.e., drug perturbation 
profiles). Finally, the proteome-wide mechanism of action 
(MoA) of each drug was assessed using VIPER to measure the 
differential protein activity in drug-treated versus control-
treated cells and used to identify optimal MR-inverter drugs 
for patient- and cognate GEMM-DT pairs (Fig. 1C). Note that 
contrary to conventional drug screening assays, OncoLoop 
does not rely on cell lines to assess drug sensitivity but only 
to elucidate drug MoA—that is, the effect of the drug on the 
activity of regulatory and signaling proteins.

Closing the Loop

Having “matched” each patient tumor (P) to a cognate 
GEMM-DT (G) and assessed each drug (D) as a potential MR-
inverter for both a tumor and its cognate model, we ranked all 
(P, G, D) triplets (PGD-loops hereafter) based on the integration 
of three distinct z-scores, assessing the statistical significance 
of (i) the similarity of a patient and GEMM-DT MR-activity 
signature, (ii) the drug’s MR-activity inversion as predicted 
from the patient tumor, and (iii) the drug’s MR-activity inver-
sion as predicted from the cognate GEMM-DT (Fig. 1C).

In Vivo Validation

To prioritize drug candidates of greatest translational rel-
evance, we focused on clinically available drugs that were most 
frequently nominated by the analysis of the human tumor 
cohorts (i.e., pharmacotyping). Among these, we evaluated the 
ability of the top-predicted drugs to inhibit tumor growth and 
recapitulate the predicted MR-activity inversion in vivo, based 
on coclinical studies in cognate tumor allografts, a syngeneic 
model of metastasis, and a PDX tumor model (Fig. 1D). The 
following sections discuss each of these steps in detail.

A GEMM Resource That Models Prostate 
Cancer Progression

An essential requirement for OncoLoop is the availabil-
ity of preexisting high-fidelity models—representing accurate 
surrogates for their human tumor counterpart—to enable 
coclinical validation of predicted drugs within a timeframe 
relevant to the patient’s care. Toward this end, we assembled 
an extensive series of GEMMs that are based on genetic and/
or pathway alterations that are prevalent in human pros-
tate cancer and thereby recapitulate a broad spectrum of 
human prostate cancer phenotypes (Fig.  2A–E; Supplemen-
tary Fig. S1A–S1C; see Supplementary Detailed Materials and 
Methods; refs. 30–34). A complete list of GEMMs used in this 
study and a description of their individual tumor phenotypes 
is provided in Supplementary Table S1A and S1B; the entire 
GEMM series is available from The Jackson Laboratory (see 
Supplementary Table S1).

These GEMMs are based on the Nkx3.1CreERT2 allele 
(Fig. 2A; ref. 35), which simultaneously introduces a prostate-
specific inducible Cre driver and a heterozygous null allele 
for the Nkx3.1 homeobox gene, as is common in early-stage 
human prostate cancer (Supplementary Fig.  S1A; ref.  25). 
We generated the baseline NP mice (for Nkx3.1CreERT2/+;  
Ptenflox/flox mice) by crossing the Nkx3.1CreERT2 allele with a 
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Pten conditional allele (Fig. 2A; ref. 36) because PTEN muta-
tions are prevalent from the earliest to most advanced stages 
of human prostate cancer (Supplementary Fig. S1A; refs. 25, 

26). The NP mice were then crossed with various other alleles 
to model: (i) upregulation of Erg in the NPE mice (E for  
Rosa26ERG/ERG; ref. 37); (ii) a missense mutation of Tp53 in the 

Figure 2.  A GEMM resource that models prostate cancer progression. A, Schematic showing representative GEMMs used in this study. The GEMMs 
were generated by crossing NP mice (for Nkx3.1CreERT2/+; Ptenflox/flox) with the alleles shown in the panel to generate six complex strains. The time line for 
tumor induction, castration, monitoring, and sacrificing is shown at the bottom of the panel. (Created with BioRender.com.) B, MRI images showing tumor 
volume changes after castration of 2 representative NPp53 mice (case 1 and case 2). The plot on the right shows the tumor volume changes over time 
for 4 representative NPp53 mice. C, Frequency of metastasis observed in the GEMMs. The numbers of mice used to determine metastasis frequency for 
each model are indicated in parentheses; two-tailed P values are shown for the Fisher exact test comparing each model to the NP mice (control). OG, out-
come group. D, Kaplan–Meier survival analysis is shown for the models in the three outcome groups (OG1, OG2, and OG3). P values were calculated using 
a two-tailed log-rank test compared with the NP mice (control). For the analyses shown in C and D, both intact and castrated mice were pooled for all 
GEMMs except NPM, where the effects of castration may be confounded by the AR dependency of the Probasin promoter used to drive Myc expression 
(see Supplementary Detailed Materials and Methods). (continued on next page)
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NPp53mut mice (for Trp53LSL-R270H/flox; ref.  38); (iii) upregula-
tion of c-Myc in the NPM mice (M for Hi-Myc; ref. 39); (iv) an 
activating mutation of Braf in the NPB mice (B for B-Raf V600E; 
ref.  40; and (v) an activating mutation of Kras in the NPK 
mice (K for KrasLSL-G12D; ref. 41; Fig. 2A). These GEMMs also 
incorporate a conditionally activatable fluorescent reporter, 
the Rosa26-CAG-LSL-EYFP allele (42), for high-efficiency lineage 
marking of tumors and metastases (30, 34).

Because tumor induction is based on an inducible Cre, 
expression of the relevant alleles following Cre-mediated gene 
recombination is not dependent on androgens, with the excep-
tion of the Hi-Myc allele, which is under the control of a consti-
tutive Probasin promoter (39). Consequently, we could analyze 
tumor progression in both hormone-intact and castrated 
contexts (Fig. 2B–E; Supplementary Fig. S2A). As expected, the 
more indolent tumors regressed following castration, whereas 
the more aggressive ones developed progressive phenotypes 

consistent with CRPC (Fig.  2B–E; Supplementary Fig.  S2A; 
Supplementary Table  S1A and S1B). In particular, as evi-
dent by MRI of NPp53 mice, surgical castration leads to ini-
tial tumor regression followed by the eventual outgrowth 
of castration-resistant tumors (Fig.  2B). These phenotypic 
differences in intact and castrated tumors were evident by 
immunostaining for AR, which is expressed in and localized to 
nuclei in intact tumors but is diminished in expression in the 
castrated tumors (compare Fig. 2E; Supplementary Fig. S2A). 
Therefore, this GEMM series recapitulates both hormone-
sensitive and CRPC.

This GEMM cohort could be subdivided into three out-
come groups (OG1–OG3) based on their castration sensitivity, 
metastatic phenotype, and overall survival (Fig.  2C–E; Sup-
plementary Fig. S2A and S2B; Supplementary Table S1A and 
S1B). Those in OG1, which include the NP and NPE mice, 
developed indolent, nonlethal, and nonmetastatic tumors 
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Figure 2. (Continued) E, Representative images for hematoxylin and eosin (H&E; top row) and IHC staining of the indicated markers in primary tumors 
from intact mice of the different GEMMs. Shown are representative images based on analyses of 3 or more mice/group; scale bars represent 50 μm. See 
also Supplementary Table S1 and Supplementary Figs. S1–S3. PanCK, pan-cytokeratin.
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with mostly benign, prostatic intraepitelial neoplasia–like 
histology and low levels of proliferation, as evident by Ki-67 
staining. Those in OG2, including the NPp53mut and NPM 
mice, were characterized by lethality within 1 year, were prone 
to develop metastasis, and displayed highly heterogeneous 
and proliferative histopathologic phenotypes. Finally, those 
in OG3, including the NPB and NPK mice, were character-
ized by lethality by 6 months of age, which was accompa-
nied by highly penetrant metastasis and high-grade, poorly 
differentiated histopathology.

To facilitate coclinical investigations, we established allograft, 
syngeneic, and organoid models from representative GEMMs 
(Supplementary Fig. S3A and S3B; Supplementary Table S1A; 
see Supplementary Detailed Materials and Methods). Because 
the GEMMs used herein are in a mixed strain background, 
allografts were generated by implanting freshly collected pri-
mary tumors into the flank of nude mouse hosts and passaged 
at least twice prior to analysis. Organoids were generated by 
FACS-based isolation of lineage-marked primary tumor cells, 
which were then cultured in vitro for up to five passages (Supple-
mentary Fig. S3B). The histopathology of the resulting allograft 
and organoid models was similar to the parental tumors from 
which they were derived (Supplementary Fig.  S3A and S3B). 
Interestingly, although we were able to generate organoids from 
GEMMs in each outcome group (OG1–OG3), we were only able 
to generate allograft models from the OG2 and OG3 tumors, 
but not from indolent OG1 tumors. Thus, we have generated an 
extensive resource of prostate cancer GEMMs, as well as estab-
lished culturable and transplantable models of these GEMMs. 
Because the current study relies on coclinical analyses in vivo, 
we used the allograft rather than organoid models; however, we 
envision that the organoid models will be beneficial for future 
in vitro investigations. Furthermore, to assess predicted drug 
activity in an immunocompetent context, we established a syn-
geneic model of prostate metastasis, which was derived from a 
bone metastasis from an NPKEYP GEMM (30) and propagated in 
immunocompetent C57BL/6 mice.

GEMM Subtypes Recapitulate Human Prostate 
Cancer Phenotypes

To characterize the molecular features of the GEMM cohort, 
we generated RNA-seq profiles from benign prostate tissue and 
prostate tumors from 136 individual mice. First, we reverse 
engineered a GEMM-specific ARACNe interactome from these 
RNA-seq profiles (Supplementary Table S2A; ref. 29). The result-
ing interactome outperformed our previously published mouse 
interactome, which was assembled from Illumina gene expres-
sion microarrays of a less comprehensive GEMM cohort (20). 
For example, bioactivity analysis—which assesses the ability of 
an interactome to recapitulate differential protein activity across 
distinct phenotypes—showed that differentially active proteins 
had significantly higher average normalized enrichment scores 
(µNES,New  =  3.79 in the new interactome vs. µNES,Old  =  1.96 in 
the previous one; P  <  2.2  ×  10−16, by two-sided Kolmogo-
rov–Smirnov test; Supplementary Fig. S4A; see Supplementary 
Detailed Materials and Methods). For instance, although the AR 
regulon—a critical determinant of prostate differentiation and 
tumorigenesis (43)—was a poor predictor of AR activity in the 
previous interactome (20), it was highly predictive in the new 
one (see Supplementary Figs. S3A, S4B–S4D, and S5A–S5C).

To define GEMM molecular subtypes and to assess their 
relationship to human prostate cancer, we focused on a subset 
of 91 GEMM-DTs having the most physiologically relevant 
histopathologic phenotypes (Supplementary Table  S1B). We 
first transformed their RNA-seq profiles to VIPER-measured 
protein activity profiles using the GEMM prostate cancer 
interactome, and then performed protein activity–based clus-
ter analysis (Fig.  3A; Supplementary Table  S2B; see Supple-
mentary Detailed Materials and Methods). To generate the 
differential gene expression signatures necessary for VIPER 
analysis, we compared each sample to the average of all 91 sam-
ples, thus identifying proteins with the greatest differential 
activity across all GEMM-DTs. Protein activity–based cluster 
analysis, which significantly outperforms gene expression–
based clustering (22) identified five clusters, corresponding 
to five molecularly distinct subtypes (C1–C5) associated with 
disease aggressiveness with respect to outcome and metastasis 
(Fig. 3A; Supplementary Fig. S4B; Supplementary Table S2C; 
see Supplementary Detailed Materials and Methods). In par-
ticular, subtypes C1 and C2 mainly comprise tumors from 
the indolent outcome group (OG1), whereas subtypes C3 to 
C5 comprise tumors from the two more aggressive outcome 
groups (OG2 and OG3). Consistent with these findings, the 
C3 to C5 subtypes were enriched for GEMMs with genomic 
alterations commonly associated with more aggressive human 
prostate cancer (Supplementary Table S2C).

Notably, >90% of the tumors in C4 and C5 had progressed 
to metastases compared with only 50% of those in C3 and 11% 
of those in C1 and C2 (Fig. 3A; Supplementary Fig. S4B). Fur-
thermore, the most indolent subtype, C1, is mostly comprised 
of tumors that regressed following castration, whereas C2 is 
mostly comprised of hormone-sensitive, indolent tumors; 
in contrast, C3 to C5 mostly comprise tumors from the more 
aggressive outcome groups, including both hormone-sensi-
tive and castration-resistant ones (Fig.  3A; Supplementary 
Table S2C). Interestingly, AR activity was well correlated with 
gene expression in the more indolent clusters (C1 and C2) and 
progressively inactivated and less correlated with gene expres-
sion in more aggressive clusters (C3 to C5; Supplementary 
Fig. S5A), consistent with defects in nuclear localization, post-
translational inactivation, and transcriptional competency in 
CRPC that decouple its expression and activity.

With respect to their molecular phenotypes, C1 to C5 tumors 
were characterized by aberrant activity of novel MR protein 
sets that effectively distinguished each subtype (Fig. 3A). These 
include homeodomain proteins (e.g., CDX1, PDX1, NKX2.6, 
NKX3.1, and PITX1) and other transcriptional regulatory pro-
teins (e.g., GATA5, SOX15, and SOX7) that have known roles 
in cellular differentiation and cell lineage control in other 
tissue contexts. The coordinated switch between the molecu-
lar programs regulated by the top MR protein activities of 
each subtype was evident by the striking differential expres-
sion of the transcriptional targets of the most differentially 
active MRs of each subtype (Fig.  3B; Supplementary Fig.  S6). 
As expected, CRPC tumors, such as those from the NPK and 
NPp53mut GEMMs, have a distinct MR-activity profile when 
compared with the corresponding intact tumors (Supplemen-
tary Fig. S5B).

Although the topmost significantly active MRs in subtypes 
C1 to C5 are novel, the differential activity of MR proteins with 
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an established role in human and mouse prostate cancer pro-
gression was clearly evident (Fig. 3A; Supplementary Fig. S4C). 
In particular, the indolent subtypes C1 and C2 present high 
activity of NKX3.1, p63, and AR, which are associated with 
well-differentiated prostate cancer (43). In contrast, the most 
aggressive and highly metastatic subtypes, C4 and C5, present 
high activity of FOXM1, CENPF, and NSD2, which are all 
aberrantly activated and functionally necessary for aggressive 

prostate cancer, in both humans and mice (20, 44). Notably, 
the aggressive subtypes C4 and C5 display downregulation of 
AR and coordinated upregulation of the glucocorticoid recep-
tor (NR3C1), which is known to be activated in human CRPC 
(ref. 45; Fig. 3A; Supplementary Fig. S4C and S4D; Supplemen-
tary Fig. S5C). Interestingly, subtype C5 presented dysregulation 
of proteins associated with NEPC, including aberrant FOXA2 
activation and FOXA1 inactivation (Fig.  3A; Supplementary 

Figure 3.  GEMM subtypes recapitulate human prostate cancer phenotypes. A, Heat map illustrating the results of protein activity–based cluster 
analysis of 91 GEMM-DTs, as well as the silhouette score and correlative variables, such as outcome group, castration status, and metastatic progres-
sion. Shown are five molecularly distinct clusters (C1–C5) that cosegregate with survival and metastatic potential. Indicated for each cluster are the 10 
most significantly activated MRs (top heat map), and the activity levels of nine established human prostate cancer markers (bottom heat map). Arrows 
indicate the activities of Ar and glucocorticoid receptor (Nr3c1), which are inversely correlated. B, Representative subnetworks, representing the activity 
of the 25 most differentially active MR proteins (five per cluster, large circles) across all clusters and the expression of their regulatory targets (small 
circles) on a cluster-by-cluster basis. Protein activity is shown using a blue (inactivated) to red (activated) scale, whereas target expression is shown on 
a blue (underexpressed) to yellow (overexpressed) scale. High-resolution images with full visibility of the MRs are shown in Supplementary Fig. S5. See 
also Supplementary Table S2 and Supplementary Figs. S4–S6.

A

B

0.5
Silhouette score

Cluster ID
Outcome
group

1
2

4
2
0
–4
–4

3

Outcome group

Castration status

Metastasis

0

–0.5
Protein activity

Cluster C1Cluster

N
ov

el
 c

lu
st

er
-s

pe
ci

fic
 m

as
te

r 
re

gu
la

to
rs

K
no

w
n 

pr
os

ta
te

 c
an

ce
r

m
as

te
r 

re
gu

la
to

rs

C1 C2 C3 C4 C5

NKX3.1
AR
NR3C1
TRP63
FOXM1
CENPF
NSD2
FOXA1
FOXA2

FLT3
IGHM
PDX1
IRF4
CIITA
NR1I2
CDX1
GATA5
TLR9
NAAA
SPIN2F
SPIN2G
SPIN2E
ZFP119B
NKX2.6
SPIN2D
NKX3.1
ZFP457
SOST
USP16
AKNAD1
PITX1
SOX15
FOXN1
GRHL3
DLX5
SDR16C5
SOX7
BCL11B
TRP63
AHCTF1
APBB1
ZFP248
PLCB1
ZFP449
SALL2
RRP8
TRERF1
NR3C1
ZFP189
INSM2
USP51
NR0B2
DCC
NEUROD4
MYT1
STOX1
HES5
LMX1B
SNCA

Cluster C2

Cluster C3

Cluster C4

Cluster C5

Differential MR activity

Differential gene expression

–4 –2 0 2 4

–4 –2 0 2 4

Castration status
Castrated

Metastasis
Localized
Metastatic

Intact

Zfp449

Plcb1

Ahctf1

Apbb1

Ighm

Irf4

Flt3

Tlr9

Spin2e

Spin2g

Spin2f

Nkx2.6

Insm2

Usp51

Nr0b2

Neurod4

Dcc

Ciita

Pitx1
Foxn1

Sox15
Grhl3

Zfp248

Zfp119b
Aknad1

Zfp449

Plcb1

Ahctf1
Apbb1

Ighm

Irf4

Flt3

Tlr9

Spin2e

Spin2g

Spin2f

Nkx2.6

Insm2

Usp51

Nr0b2

Neurod4

Dcc

Ciita

Pitx1
Foxn1

Sox15
Grhl3

Zfp248

Zfp119b
Aknad1

Zfp449

Plcb1

Ahctf1
Apbb1

Ighm

Irf4

Flt3

Tlr9

Spin2e

Spin2g

Spin2f

Nkx2.6

Insm2

Usp51

Nr0b2

Neurod4

Dcc

Ciita

Pitx1
Foxn1

Sox15
Grhl3

Zfp248

Zfp119b Aknad1

Zfp449

Plcb1

Ahctf1
Apbb1

Ighm

Irf4

Flt3

Tlr9

Spin2e

Spin2g

Spin2f

Nkx2.6

Insm2

Usp51

Nr0b2

Neurod4

Dcc

Ciita

Pitx1
Foxn1

Sox15
Grhl3

Zfp248

Zfp119b
Aknad1

Zfp449

Plcb1

Ahctf1
Apbb1

Ighm

Irf4

Flt3

Tlr9

Spin2e

Spin2g

Spin2f

Nkx2.6

Insm2

Usp51

Nr0b2

Neurod4

Dcc

Ciita

Pitx1
Foxn1

Sox15
Grhl3

Zfp248

Zfp119b Aknad1

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/13/2/386/3266908/386.pdf by M

ilo Falcon Falcon on 19 M
ay 2023



The OncoLoop Framework for Precision Oncology RESEARCH ARTICLE

 FEBRUARY  2023 CANCER DISCOVERY | 395 

Fig. S4C; ref. 46), and was significantly enriched in the Beltran 
NEPC signature (P < 10−4; see Supplementary Detailed Materi-
als and Methods; ref. 11), whereas no enrichment for the NEPC 
signature was detectable in subtypes C1 to C4. Notably, none 
of the GEMM-DTs, including those associated with advanced 
prostate cancer and NEPC (C4 and C5, respectively), had under-
gone pharmacologic treatment; this is a novel feature of the 
GEMM cohort compared with analogous human prostate 
cancer cohorts, which are generally derived from patients who 
had undergone extensive treatments (26).

To further characterize the GEMM subtypes and to 
assess their relationship to human prostate cancer, we per-
formed pathway enrichment analyses (Supplementary 
Table S2D; see Supplementary Detailed Materials and Meth-
ods). To determine the top pathways associated with each 
subtype, we computed the enrichment of each gene set in 
proteins differentially active in each sample and then inte-
grated across samples in each cluster using the Stouffer 
method (see Supplementary Detailed Materials and Meth-
ods). These analyses revealed that the most aggressive sub-
types, C4 and C5, show strong enrichment for proliferation 
and oncogenic hallmarks, for example, G2–M checkpoint 
(P  =  2.14  ×  10−39), E2F targets (P  =  4.5  ×  10−88), DNA  
repair (P = 5.8 × 10−68), and MYC targets V1 and V2 (integrated 
P  =  3.3  ×  10−21; Supplementary Fig.  S4D; Supplementary 
Table S2D). (Note that all P values reported in this article are 
corrected for multiple hypothesis testing; see Supplementary 
Detailed Materials and Methods). Furthermore, as expected 
based on human prostate cancer, hormone-related pathways, 
including AR and glucocorticoid receptor–related pathways, 
were coordinately regulated and inversely correlated (Sup-
plementary Fig.  S4D; Supplementary Table  S2D). Interest-
ingly, interferon and inflammatory response hallmarks, 
including IFNα response (P  =  2.4  ×  10−52), IFNγ response 
(P = 8.2 × 10−68), and inflammatory response (P = 4.7 × 10−18) 
were downregulated in subtypes C4 and C5 (Supplementary 
Fig. S4D; Supplementary Table S2D). These findings suggest 
that the most aggressive tumors may have an immunosup-
pressive tumor microenvironment and therefore may be valu-
able for evaluating immunotherapy response.

Taken together, these molecular analyses define a series of 
GEMM subtypes (C1 – C5) that (i) are distinguished by novel 
as well as known MR protein activities; (ii) model a wide range 
of prostate cancer phenotypes from indolent to aggressive 
variants; (iii) model hormone responsivity as occurs in human 
prostate cancer, including castration-sensitive and castration-
resistant tumors; (iv) can differentiate lethal subtypes of 
adenocarcinoma and NEPC in the absence of prior treatment; 
and (v) recapitulate key aspects of human prostate cancer, 
including expression of relevant MR proteins and relevant 
pathways. Thus, this GEMM cohort represents a valuable 
resource to characterize and model human prostate cancer, 
particularly for advanced tumors, as would be the principal 
focus for predicting drug treatments for human patients.

Matching GEMM-DTs to Patient Tumors and 
Metastases

Having established that the molecular programs of the 
GEMM cohort are relevant for human prostate cancer, we 
next asked whether individual GEMM-DTs can provide 

high-fidelity (cognate) surrogates for individual patients 
(Fig.  4A and B; see Supplementary Detailed Materials and 
Methods). We thus compared the MR protein activity sig-
nature for individual human patients with that of each 
available GEMM-DT (n = 91) and designated those present-
ing highly significant conservation of patient-specific MR 
activity (P ≤ 10−5, by one-tailed aREA test) as cognate models. 
For these studies, we queried two well-characterized patient 
cohorts, one comprised of treatment-naïve primary tumors 
collected by TCGA (n = 333; ref. 25) and a second comprised 
of posttreatment metastatic biopsies from mCRPC patients 
collected as part of the Stand Up To Cancer–Prostate Cancer 
Foundation cohort (SU2C; n = 212; ref. 26).

First, we assembled distinct human prostate cancer inter-
actomes for the primary tumors and metastases by ARACNe 
analysis of RNA-seq profiles from the TCGA and SU2C 
cohorts, respectively (Supplementary Table S3A and S3B; see 
Supplementary Detailed Materials and Methods). We then 
used VIPER to transform the transcriptional profiles of the 
TCGA and SU2C cohorts into protein activity profiles, using 
their respective interactomes (Supplementary Table S3C and 
S3D). Differential expression signatures for VIPER analysis 
were computed using as reference a combination of all RNA-
seq profiles from the Genotype-Tissue Expression (GTEx) 
normal prostate cohort (n  =  245; ref.  47) and a humanized 
version of normal mouse prostate tissue (see Supplementary 
Detailed Materials and Methods). This approach allowed the 
identification of MR proteins that are specifically dysregu-
lated in the tumor context compared with normal prostate.

To identify cognate models on an individual patient basis, 
we generated protein activity signatures by comparing each 
GEMM-DT to the same reference as above. We then assessed 
the fidelity of each of the GEMM-DTs to each individual 
TCGA or SU2C patient by assessing the enrichment of the 25 
most activated (25↑) and 25 most inactivated proteins (25↓) 
of each human tumor, representing its candidate MR pro-
teins (MR proteins hereafter for simplicity), compared with 
MR proteins differentially active/inactive in each GEMM-DT 
(Fig. 4A and B; Supplementary Table S4A and S4B). We used a 
fixed number of MR proteins (i.e., 25↑+25↓) because (i) this is 
required to make the statistics of enrichment analyses compa-
rable across proteins and cohorts, and (ii) we have previously 
shown that an average of 50 MRs is sufficient to account for 
the canalization of functionally relevant genetic alterations 
in the vast majority of TCGA samples (22). For simplicity, we 
refer to these 25↑+25↓ MR proteins as the MR-activity signa-
ture. Having assessed the enrichment of their MR-activity sig-
natures, we selected a highly conservative statistical threshold 
(P ≤ 10−5) to nominate high-fidelity, cognate GEMMs-DTs (see 
Supplementary Detailed Materials and Methods).

Analysis of primary tumors from the TCGA cohort revealed 
that 78% had at least one high-fidelity cognate GEMM-DT 
(n  =  261/334; Fig.  4A; Supplementary Table  S4A). Strik-
ingly, analysis of prostate cancer metastases from the SU2C 
cohort revealed an even greater fraction (93%) of patients 
with high-fidelity cognate GEMM-DTs (n  =  198/212), and, 
on average, 48 cognate GEMM-DTs were identified as sig-
nificant cognate models (P  ≤  10−5) for each SU2C tumor 
(Fig.  4A; Supplementary Table  S4B). This likely reflects the 
inherent bias of the GEMM cohort toward more aggressive 
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prostate cancer phenotypes (see Fig. 3). Heat map represen-
tation of the matched patients and GEMM-DTs shows good 
clustering of patient and GEMM-DTs in the same subtype 
(C1–C5). Although most patients were matched to multi-
ple GEMM-DTs, we highlight the GEMM-DTs representing 
the top five most statistically significant MR-based matches 
for each patient (i.e., the highest fidelity models, Fig.  4A) 
because these would provide the best models for coclinical 
studies. As expected, given the more aggressive nature of 
the SU2C patients, highest fidelity models for the TCGA 
and SU2C cohorts formed distinct clusters. These findings 
demonstrate that individual tumors from the GEMM cohort 
(GEMM-DTs) represent high-fidelity surrogates for individ-
ual patients with prostate cancer. Furthermore, most of the 
patients with aggressive prostate cancer, who would benefit 
most from coclinical validation of novel treatments in vivo, 
are represented by at least one GEMM-DT.

Generation of Drug Perturbational Profiles to 
Identify MR-Inverter Drugs

To generate drug perturbations for predicting optimal 
drug treatments, we first identified cell lines that most closely 
recapitulate the MR signature of the patients. Specifically, we 

performed VIPER analyses on gene expression signatures for 
each of the 10 prostate cancer cell lines available in the Can-
cer Cell Line Encyclopedia (CCLE), and compared these data 
with the corresponding data from the TCGA (Supplementary 
Fig.  S7A–S7C) and SU2C (Supplementary Fig.  S7D–S7F) 
cohorts (27). This analysis identified two prostate cancer 
cell lines—the androgen-dependent LNCaP and the andro-
gen-independent DU145 lines—that jointly provided high-
fidelity models for >80% of the tumors in the TCGA cohort 
based on MR-activity signature conservation (Supplementary 
Fig. S7A and S7D; ref. 27). Although drug predictions using 
either LNCaP or DU145 perturbation profiles were concord-
ant (27), to identify optimal treatments for prostate cancer 
patients with aggressive tumors, our subsequent analyses 
focused primarily on the more aggressive, AR-independent 
DU145 cell line.

Specifically, drug MoA was assessed from RNA-seq pro-
files of DU145 or LNCaP cells harvested 24 hours following 
treatment with 117 FDA-approved and 218 late-stage experi-
mental (i.e., in phase II and III clinical trial) drugs, as well as 
vehicle control (DMSO; i.e., n =  335 drugs in total, Supple-
mentary Table S5A). To minimize activation of cell death or 
cellular stress pathways that would confound the assessment 

Figure 4.  Matching GEMM-DTs to patient tumors and metastases. A, Heat maps represent the MR-based fidelity score of each tumor sample (col-
umns) vs. each GEMM-DT model (rows) for the TCGA (right) and SU2C (left) cohort, respectively. Relevant patient phenotypic variables—that is, cohort, 
Gleason score, and NEPC status—are shown in the top three bars, whereas relevant GEMM-DT phenotypic variables—that is, cluster, outcome, castration 
status, and metastasis status—are shown in the four vertical bars to the left of the heat map. Fidelity scores are computed as the −Log10P of the patient 
vs. GEMM-DT MR enrichment analysis. The five topmost significant cognate models for each patient are shown in dark red; other statistically significant 
(P ≤ 10−5) high-fidelity models are shown using a lighter to darker color scale (as shown). The light blue bar plots at the bottom of the two heat maps show 
the number of candidate cognate models for each patient, whereas the dark blue bar plots to the right show the number of patients for which a GEMM-DT 
represents a cognate model. Overall, 78% of the samples in the TCGA (n = 261 of 334) and 93% of those in the SU2C cohorts (n = 198 of 212) have at 
least one cognate GEMM-DT. B, Gene set enrichment analysis of the fidelity analysis for representative GEMM-DT–SU2C pairs showing an example of an 
MR-unmatched (low-fidelity, top) and an MR-matched (high-fidelity, bottom) pair. See also Supplementary Table S4. NES, normalized enrichment score.
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of drug MoA, cells were treated with the 48-hour EC20 con-
centration of each drug (i.e., highest sublethal concentra-
tion), as assessed from 10-point drug response curves (see 
Methods). RNA-seq profiles were generated using PLATE-seq, 
which was specifically designed to generate profiles of drug 
perturbations by microfluidic automation (48).

For each drug, differential protein activity profiles, rep-
resenting the drug’s MoA, were then generated by VIPER 
analysis of drug versus vehicle control–treated cells (Supple-
mentary Table  S5B; see Supplementary Detailed Materials 
and Methods). Cluster analysis of differentially activated 
proteins following drug treatment with the most bioactive 
agents—that is, 115 drugs inducing the most significant dif-
ferential protein activity patterns—identified 11 drug clus-
ters (D1–D12) based on differential activation/inactivation of 
13 protein sets (programs; P1–P13; Supplementary Fig.  S8). 
Consistent with the analysis, drugs presenting similar MoA 
were clustered together or in closely related clusters. For 
instance, cytotoxic drugs cosegregated in clusters D1, D2, 
D5, D7, and D8, whereas kinase inhibitors were found mostly 
in clusters D3, D10, and D12, including a majority of MAPK 
(i.e., sorafenib, dabrafenib, vemurafenib, and trametinib), 
EGFR inhibitors (i.e., lapatinib, erlotinib, and vandetanib), 
and mTOR inhibitors (i.e., everolimus and temsirolimus) 
in D12. Similarly, a subset of hormone blockade drugs 
(i.e., anastrazole, enzalutamide, abiraterone, and mitotane) 
clustered in D6 and D9 and another subset (i.e., ralox-
ifene, leuprolide, exemestane, and tamoxifen) in D3 and D4. 
Folate (i.e., methotrexate and pralatrexate) and microtubule 
inhibitors (i.e., paclitaxel and ixabepilone) clustered in D4, 
whereas proteasome inhibitors (i.e., ixazomib, carfilzomib, 
and bortezomib) presented very similar profiles in D11 and 
D12. In contrast, as expected, more pleiotropic drugs with 
broad-spectrum MoA, such as HDAC inhibitors (i.e., vori-
nostat, panobinostat, and belinostat), CRBN inhibitors (i.e., 
thalidomide, lenalidomide, and pomalidomide), and dem-
ethylating agents (i.e., decitabine and azacytidine), were 
broadly distributed across multiple clusters. Given the high 
reproducibility of replicate perturbational profiles from 
the same drug (P ≪ 0.05, by two-tail enrichment analysis), 
for the majority of the 115 bioactive compounds, and the 
diversity of the differential protein activity they induce, this 
suggests that the perturbational profiles generated for this 
study effectively inform on drug MoA (27).

Using OncoLoop to Predict Candidate Drugs for 
Individual Patients

To predict candidate drugs, we identified those for which 
the MR-activity signature of both a patient and its cognate 
GEMM-DT was significantly inverted in drug-treated versus 
vehicle control–treated cells (MR-inverter drugs; Fig. 5A–C). 
Because our goal is to identify treatments for patients with 
advanced, rather than indolent, prostate cancer, we focused 
on the metastatic patients in the SU2C cohort and their 
cognate GEMM-DTs (which could be identified for 93% of 
the SUC2 patients; see Fig.  4). For each SU2C patient and 
each cognate GEMM-DT, MR-inverter drugs were identi-
fied by enrichment analysis of the respective top 25↑  and 
25↓ MR proteins (see Fig. 4) compared with the MR-activity 
signatures of the drug-treated versus vehicle control–treated 

cells, at a conservative statistical threshold (P ≤ 10−5; Supple-
mentary Table S5C and S5D).

The resulting PGD-loops—comprising a patient, its cog-
nate GEMM-DT, and the candidate MR-inverter drugs 
(Fig. 5A and B)—were ranked based on the Stouffer integra-
tion of three z-scores, corresponding to (i) zPG, the GEMM 
versus patient MR-activity conservation z-score (Supplemen-
tary Table S4B); (ii) zPD, the patient-specific MR-inverter drug 
z-score (Supplementary Table S5C); and (iii) zGD, the cognate 
GEMM-DT–specific MR-inverter drug z-score (Supplemen-
tary Table  S5D). Considering all possible combinations of 
SU2C patients (n  =  212), GEMM-DTs (n  =  91), and drugs 
(n  =  337), there were  >6.5 million potential PGD-loops; of 
these, 668,138 achieved statistical significance (P ≤ 10−5) on 
all three z-scores (Supplementary Table  S6). Notably, the 
extensive coverage of both GEMM-DTs and drugs for the 
SU2C patients, which on average was 48 cognate GEMM-
DTs (P  ≤  10−5) for each SU2C tumor (see Fig.  4) and 22 
FDA-approved candidate MR-inverters (P  ≤  10−5) for each 
SU2C tumor/cognate–GEMM-DT pair, supports the use of 
OncoLoop in a coclinical setting.

To provide a visual representation of OncoLoop, we show 
three heat maps reporting the statistical significance of 
model fidelity (OncoMatch), and drug MR-inversion analyses 
(OncoTreat) for a subset of SU2C patients (n = 56), their cog-
nate GEMM-DTs (n = 5), and drugs (n = 28), which were espe-
cially enriched in statistically significant PGD-loops (Fig. 5A). 
For illustrative purposes, we highlight a PGD-loop defined 
by an mCRPC patient (SC_9182_T), his cognate GEMM-
DT (CMZ315)—harboring mutation of p53, a gene that is 
frequently dysregulated in human CRPC (see Supplementary 
Fig. S1A)—and the MEK inhibitor trametinib (Fig. 5A and B). 
Notably, as evident by gene set enrichment analysis (GSEA), 
all three normalized enrichment score (NES) values for this 
PGD-loop were highly significant, including for the model 
fidelity analysis (NES  =  8.14, P  =  4.1 ×  10−16), as well as for 
the patient-specific (NES  =  −5.47, P  =  4.4  ×  10−8) and cog-
nate GEMM-DT–specific trametinib-mediated MR inversion 
(NES = −4.99, P = 6.2 × 10−7; Fig. 5C), resulting in a highly 
significant integrated, OncoLoop P value (NES  =  10.71, 
P = 4.6 × 10−27).

Coclinical Validation in Cognate GEMM-DTs
To optimize the clinical translation of this approach and 

to capture OncoLoop predictions for a majority of patients, 
we focused on PGD-loops comprising drugs that were both 
clinically available and most recurrently predicted for SU2C 
patients (Fig.  5D). Specifically, we considered only FDA-
approved drugs (n  =  117), predicted for  ≥50% of the SU2C 
tumors, and active at physiologically relevant concentrations 
(≤1 µmol/L), thus yielding 16 candidate drugs for validation. 
Cluster analysis of their MR-inversion z-score for individual 
SU2C tumors (i.e., predicted drug sensitivity) identified five 
clusters, representing subsets of patients predicted to be sen-
sitive to the same subsets of drugs (i.e., pharmacotypes; see 
Methods; Fig. 5D). Independent stratification of the GEMM-
DTs, also considering only FDA-approved drugs active at 
physiologically relevant concentrations (≤1 µmol/L), identi-
fied the same top 16 drugs (Fig. 5E), thus further confirming 
the representative nature of these cognate models. Consistent 

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/13/2/386/3266908/386.pdf by M

ilo Falcon Falcon on 19 M
ay 2023



Vasciaveo et al.RESEARCH ARTICLE

398 | CANCER DISCOVERY FEBRUARY  2023 AACRJournals.org

with our model fidelity-based expectations, pharmacotyping 
analyses using LNCaP perturbation profiles produced results 
that were similar to those from DU145 cells (Supplementary 
Fig. S9A and S9B).

Among the 16 prioritized drugs, we eliminated those with 
overlapping MoA (e.g., multiple HDAC inhibitors) or lacking 

demonstrated variable efficacy in prior prostate cancer clini-
cal trials, thus yielding four candidate drugs for experimental 
validation: temsirolimus (mTOR inhibitor; NCT00919035 
and NCT00012142; ref.  49), trametinib (MEK inhibitor; 
NCT02881242 and NCT01990196), panobinostat (HDAC 
inhibitor; NCT00667862 and NCT00878436; ref.  50), and 

Figure 5.  OncoLoop analysis. A, Illustrative examples of a PGD-loop: three heat maps representing a subset of patients, GEMM-DTs, and drugs are 
shown. The top left heat map (OncoMatch: patient vs. GEMM-DT) shows the fidelity scores for 56 SU2C samples (columns) and five GEMM-DTs (rows); the 
bottom left heat map (OncoTreat: patient vs. drug) shows the MR-inverter scores for 28 drugs (rows), as assessed against 56 SU2C samples (columns); 
and finally, the top right heat map (OncoTreat: GEMM-DT vs. drug) shows the MR-inverter scores for the same 28 drugs (columns), as assessed against 
the five GEMM-DTs (rows). All scores are computed as (−Log10P), and statistically significant scores (P ≤ 10−5) are shown with a light to dark color scale 
as indicated; nonsignificant scores are shown in white. MR-inverter scores are based on MR-activity inversion analysis based on the drug- vs. vehicle 
control–treated DU145 cells. For visualization purposes, heat map results are depicted by hierarchical clustering. Among the many statistically signifi-
cant PGD-loops, we highlight one formed by the SU2C sample SC_9182_T, his top-ranked cognate GEMM-DT (CMZ315), and the drug trametinib. (Created 
with BioRender.com.) B, Circos plot showing all significant PGD-loops, including the one highlighted in A (thicker, dotted curves). P value calculated by 
integrating the three associated scores. C, GSEA plots for the three relationships in the highlighted PGD-loop, including (i) the patient to cognate GEMM-
DT fidelity analysis (OncoMatch: patient vs. GEMM-DT, left), (ii) the MR-inversion score by trametinib, as assessed for the SU2C sample MRs (OncoTreat: 
patient vs. drug, middle), and (iii) the MR-inversion score by trametinib, as assessed for the cognate GEMM-DT (OncoTreat: GEMM-DT vs. drug, right). 
(continued on following page)
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bortezomib (proteosome inhibitor; NCT00193232 and 
NCT00183937). As a negative control, we selected cabazi-
taxel—a current standard of care for advanced prostate cancer 
that has variable efficacy in patients (8)—which was predicted 
as a significant MR-inverter for the human tumors but not 
for their cognate GEMM-DTs.

To test drug sensitivity predictions, we performed tumor 
growth assays in allografts derived from two cognate GEMM-
DTs, namely, CMZ315 and CMZ150 (Fig. 6A–G; Supplemen-
tary Fig. S10A–S10F). These represent two of the aggressive 
GEMM clusters, C3 and C4, and were derived from p53-
mutated and MYC-amplified mCRPC GEMM tumors, respec-
tively (Supplementary Table S1). For each drug, we used their 

published conditions for in vivo mouse studies to determine 
their appropriate concentration and treatment schedule, and 
we also confirmed their uptake into allograft tumors by 
pharmacokinetic assays (Supplementary Fig. S10A; see Sup-
plementary Detailed Materials and Methods).

Three of the four predicted drugs—namely, temsirolimus, 
trametinib, and panobinostat—significantly reduced tumor 
volume and weight in allografts from both of the cognate 
GEMM-DTs (P  ≤  0.01, one-way ANOVA; Fig.  6A–D; Sup-
plementary Fig.  S10C–S10F), whereas bortezomib emerged 
as a false positive because it did not significantly inhibit 
tumor growth in either allograft. Also consistent with predic-
tions, cabazitaxel induced only modest tumor volume/weight 
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Figure 5. (Continued) D and E, Drug prioritization: FDA-approved drugs (n = 117; rows) were prioritized as candidate MR inverters of either patients 
from the SU2C cohort (n = 212; columns in D) or GEMM-DTs (n = 91; columns in E) using drug perturbation data from the DU145 cells. Drugs were filtered 
based on screened concentration (≤ 1 μmol/L) and patient coverage, that is, only those identified as MR inverters for >50% of the human samples are 
included. Relevant phenotypic variables for either patients or GEMM-DTs are shown in bars at the top of each heat map. The MR-inverter score (−Log10P, as 
computed by aREA) is shown using a white (P > 10−5) to dark blue heat map (see legend). The blue bar plots on the right summarize the number of patients 
or GEMM-DTs predicted as sensitive to each drug. Black arrows to their right point to candidate drugs selected for validation, whereas the gray arrows 
point to cabazitaxel, the standard-of-care for mCRPC. In E, the yellow bar plot at the top shows the number of drugs identified as significant MR invert-
ers for each GEMM-DT and the rectangle indicates the allografts used for validation. See also Supplementary Tables S5 and S6 and Supplementary Figs. 
S7–S9. LN, lymph node.

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/13/2/386/3266908/386.pdf by M

ilo Falcon Falcon on 19 M
ay 2023



Vasciaveo et al.RESEARCH ARTICLE

400 | CANCER DISCOVERY FEBRUARY  2023 AACRJournals.org

A

B

E

F

G H

I

J

C D
4
3
2
1

1 2 3 4 5 6 7 8 9 10 11
Centimeters

4
3
2
1

1 2 3 4 5 6 7 8 9 10 11
Centimeters

4
3
2
1

1 2 3 4 5 6 7 8 9 10 11
Centimeters

4
3
2
1

1 2 3 4 5 6 7 8 9 10 11
Centimeters

4
3
2
1

1 2 3 4 5 6 7 8 9 10 11
Centimeters

4
3
2
1

1 2 3 4 5 6 7 8 9 10 11
Centimeters

∆ tumor volume
∆ tumor weight

Pharmokinetics (PK)
MR-inversion (PD)

Analyses

Analysis
Analysis (PD)

Treatment

4–51–2
Weeks

5

4

3

2

1

0

Allograft
model

5,000

4,000

3,000

2,000

1,000

0

Tu
m

or
 v

ol
um

e 
(m

m
2 )

Tu
m

or
 w

ei
gh

t (
gr

am
s)

Tumor
implantation

Vehicle
Predicted drugs

Cabazitaxel (standard of care)

Treatment

Ve
hic

le

NS
NS

0

AnalysisTreatment

122

Days

S
pi

ne
Li

ve
r

Syngeneic
model

Intracardiac
delivery

0

0 5 10
Time (days)

15 20

NS

Vehicle

Cabazitaxel

Bortezomib

Temsirolimus

Panobinostat

Trametinib

C
ab

az
ita

xe
l

P
an

ob
in

os
ta

t

P < 0.001

P
 <

 0
.0

01

P
 <

 0
.0

00
1

P
 <

 0
.0

00
1

P
 =

 0
.0

01
0

P
 <

 0
.0

00
1

P
 <

 0
.0

00
1

P
 <

 0
.0

12
7

P
 =

 0
.0

49
8

P
 <

 0
.0

00
1

P
 <

 0
.0

00
1

P < 0.0001

Cab
az

ita
xe

l

Bor
te

zo
m

ib

Te
m

sir
oli

m
us

Pan
ob

ino
sta

t

Tra
m

et
ini

b

Ve
hic

le

Te
msir

oli
mus

+ 
an

ti–
PD-1

Te
msir

oli
mus

Anti
–P

D-1

Tra
m

eti
nib

+ 
an

ti–
PD-1

Tra
m

eti
nib

Ve
hic

le

Te
msir

oli
mus

+ 
an

ti–
PD-1

Te
msir

oli
mus

Anti
–P

D-1

Tra
m

eti
nib

+ 
an

ti–
PD-1

Tra
m

eti
nib

Vehicle

REACTOME_INTERFERON_ALPHA_BETA_SIGNALING

HALLMARK_INTERFERON_GAMMA_RESPONSE

HALLMARK_INFLAMMATORY_RESPONSE

Anti–PD-1

BortezomibTemsirolimus PanobinostatTrametinib

BortezomibTemsirolimus

Temsirolimus
+ anti–PD-1Temsirolimus

PanobinostatTrametinib

Trametinib
Trametinib

+ anti–PD-1

0 500

Protein activity signature

1,000 1,500 2,000 2,500 0 500

Protein activity signature

1,000 1,500 2,000 2,500 0 500

Protein activity signature

1,000 1,500 2,000 2,500 0 500

Protein activity signature

1,000 1,500 2,000 2,500

1.
0

0.
0

E
nr

ic
hm

en
t s

co
re

–1
.0

1.
0

0.
0

E
nr

ic
hm

en
t s

co
re

–1
.0

1.
0

0.
0

E
nr

ic
hm

en
t s

co
re

–1
.0

1.
0

0.
0

E
nr

ic
hm

en
t s

co
re

–1
.0

NES = –7.19, P = 6.5 × 10–13 NES = –5.71, P = 1.2 × 10–8 NES = –8.62, P = 6.5 × 10–18 NES = –4.95, P = 7.3 × 10–7

Spine
Protein activity

4
2
0
–2
–4

A
re

a 
of

 m
et

as
ta

si
s/

m
ou

se

N
um

be
r 

of
 m

et
as

ta
se

s/
m

ou
se2.0

1.5

1.0

0.5

0.0

300

200

100

0

Liver

B
or

te
zo

m
ib

Im
m

un
ne

 p
at

hw
ay

s
C

an
ce

r 
pa

th
w

ay
s

Te
m

si
ro

lim
us

Tr
am

et
in

ib

HALLMARK_DNA_REPAIR

REACTOME_DNA_REPAIR

HALLMAAK_MYC_TARGETS_V2

HALLMARK_MYC_TARGETS_V1

HALLMARK_G2M_CHECKPOINT

REACTOME_INTERFERON_SIGNALING

HALLMARK_INTERFERON_ALPHA_RESPONSE

REACTOME_INTERFERON_GAMMA_SIGNALING

D
ow

nloaded from
 http://aacrjournals.org/cancerdiscovery/article-pdf/13/2/386/3266908/386.pdf by M

ilo Falcon Falcon on 19 M
ay 2023



The OncoLoop Framework for Precision Oncology RESEARCH ARTICLE

 FEBRUARY  2023 CANCER DISCOVERY | 401 

reduction, which was borderline significant in only one of 
the two allografts. To ask whether these drugs produced a 
quantitatively different effect in models predicted to have 
higher versus lower sensitivity based on OncoLoop statistics, 
we assessed the effect of these same three drugs in an alterna-
tive p53-driven allograft (CMZ163) in which panobinostat 
was only borderline statistically significant (NES = 3.2) and 
temsirolimus and trametinib were predicted as the best 
(NES = 16.55) and second best (NES = 13.63) drugs, respec-
tively (Supplementary Fig.  S10B). Notably, tumor growth 
inhibition was highly consistent with the OncoLoop predic-
tion statistics, with panobinostat showing a lower reduc-
tion in tumor volume compared with temsirolimus and 
trametinib (Supplementary Fig. S10G–S10I).

To better understand the effect of drugs on both MR activ-
ity and the activity of cancer-relevant pathways, we performed 
pharmacodynamic studies (Fig. 6F and G). First, we analyzed 
RNA-seq profiles of tumors following short-term (5-day) 
drug- versus vehicle control–treated CMZ315 allografts to 
assess MR-activity inversion before significant tumor cell 
death or necrosis could ensue. Confirming OncoLoop pre-
dictions, all four candidate drugs induced highly significant 
MR inversion in vivo, as evidenced by GSEA analyses show-
ing significantly negative NES values (P < 10−7, for all tested 
drugs, by one-tail aREA test; Fig.  6F). However, analysis of 
RNA-seq profiles from end-of-study samples showed that key 
cancer-related pathways were inverted only by the drugs that 
inhibited tumor growth—namely, temsirolimus, trametinib, 
and panobinostat—but not by those that failed to inhibit 
it—namely, bortezomib or cabazitaxel (Fig. 6G). Indeed, bort-
ezomib was the only drug that, while inverting the MR-
activity signature, also reprogrammed the tumors to a state 
with highly aberrant activity of MYC and DNA repair–related 
pathways (Fig. 6G).

Notably, in addition to cancer-related pathways, immune-
related pathways were also significantly reactivated in tumors 
treated with predicted drugs compared with the vehicle 
control–treated animals, but not in cabazitaxel-treated 
animals (Fig.  6G). The effect was especially significant for 
panobinostat and trametinib, suggesting that these drugs 
may cooperate with immune-checkpoint inhibitors. Taken 
together, these findings (i) confirm that drugs predicted via 
OncoLoop to mediate MR inversion are frequently capable 
of abrogating tumor growth when experimentally validated 
in vivo, (ii) support the hypothesis that drug-mediated MR 

inversion is predictive of tumor growth inhibition, and (iii) 
suggest that treatment with predicted drugs can influence 
immune pathways, as previously reported (22).

Coclinical Validation in Clinically 
Relevant Contexts

Having demonstrated that OncoLoop predictions can be 
validated in cognate allograft tumor models in vivo, we next 
sought to validate the OncoLoop predictions in contexts 
that are more clinically relevant for human prostate can-
cer, namely, CRPC and metastasis. First, we asked whether 
OncoLoop-predicted drugs cooperate with the second-
generation antiandrogen enzalutamide in hormone-sensitive 
and castration-resistant contexts (Supplementary Fig. S11A–
S11G). Using the MR-matched CMZ315 GEMM-DT allograft 
(as above), we found that enzalutamide treatment increased 
rather than decreased tumor growth in castrated but not in 
intact mice (P < 0.01; Supplementary Fig.  S11B and S11E), 
consistent with previous studies (34, 51). However, when 
combined with the predicted drug trametinib, enzalutamide 
treatment resulted in decreased rather than increased tumor 
growth in castrated mice (P < 0.01; compare Supplementary 
Fig.  S11B–S11G). These findings suggest that OncoLoop 
predictions may enhance the efficacy of second-generation 
antiandrogens in patients with CRPC.

Second, we investigated the ability of the OncoLoop-
predicted drugs to inhibit metastasis in immunocompetent 
mice. Toward this end, we used an MR-matched syngeneic cell 
model derived from a bone metastasis of an NPK GEMM (30) 
to test the ability of OncoLoop-predicted drugs to inhibit 
metastasis (Fig.  6H–J; Supplementary Fig.  S10B). Notably, 
among the top-predicted drugs were trametinib and tem-
sirolimus (Supplementary Fig.  S10B), which also showed 
significant rescue of the negative immune- and inflamma-
tion-related pathway enrichment following treatment (see 
Fig. 6G). Given these observations and because this metasta-
sis model is propagated in immunocompetent C57BL/6 mice, 
we evaluated the efficacy of these predicted drugs to inhibit 
metastasis both alone and in combination with the mouse 
equivalent of the PD-1 inhibitor nivolumab (Fig.  6H–J).  
Indeed, temsirolimus and trametinib significantly inhibited 
metastasis, both in bone (spine) and in soft tissues (liver; P < 
0.001; Fig. 6I and J). Furthermore, although nivolumab alone 
was only modestly effective for inhibition of metastasis, its 
combination with either temsirolimus or trametinib yielded 

Figure 6.  Coclinical validation of OncoLoop-predicted drugs using GEMM-derived models. A–G, Validation in an allograft tumor model. A, Selected 
drugs were validated in vivo in allograft models derived from the cognate GEMM-DT CMZ315. Allografts were grown subcutaneously in nude mouse 
hosts, and the mice were treated with predicted drugs, vehicle control, and a negative control (cabazitaxel) for the times indicated. Following sacrifice, 
the tumors were collected and analyzed as indicated. (Created with BioRender.com.) B, Summary of tumor volume changes over the treatment period. 
C, Summary of tumor weights following sacrifice. P values for B and C were computed by one-way ANOVA at the last time point compared with vehicle-
treated tumors and adjusted for multiple hypothesis testing with Dunnett test (10 animals were enrolled to the vehicle control arm and 5 animals were 
enrolled on each of the drug treatment arms). D and E, Representative images of final tumor sizes in vehicle control– and negative control–treated 
allografts (D) and allografts treated with predicted drugs (E). F, Pharmacodynamic assessment of MR inversion by GSEA for the four predicted drugs 
comparing drug- vs. vehicle-treated tumors. G, Enrichment analysis of selected immune- and cancer-related pathways based on the differential protein 
activity profiles between drug- and vehicle control–treated GEMM-DT CMZ315 allografts at the end of the study. H–J, Validation in a syngeneic metas-
tasis model. H, Predicted drugs were validated in vivo for their effectiveness to inhibit metastasis using a syngeneic model. NPKEYFP cells were delivered 
by intracardiac injection into immunocompetent mice, and drugs were administered individually and in combination with a PD-1 inhibitor. (Created with 
BioRender.com.) I, Representative images of spine and liver metastasis visualized by ex vivo fluorescence of YFP-expressing tumor cells for each experi-
mental group. J, Quantification plots showing metastasis area (for spine) or metastases number (for liver) based on 2 independent experiments, each with 
n = 5 mice per group. P values were obtained by one-way ANOVA with Dunnett multiple comparisons against the vehicle. See also Supplementary Figs. 
S10 and S11. NS, not significant; PD, pharmacodynamics.
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virtually no metastases in this model (P  < 0.0001; Fig.  6I 
and J). These findings demonstrate OncoLoop’s utility in 
predicting drugs likely to have an impact on the clinical care 
of patients with CRPC and mCRPC and are also consistent 
with our previous findings that MR-activity inversion con-
tributes to modulating immune- and inflammation-related 
pathways (22).

Coclinical Validation in Cognate Human 
PDX Models

Lastly, to assess whether OncoLoop-predicted drugs were 
effective in a cognate human tumor context, we performed 
analogous coclinical studies using the well-characterized 
LuCaP series of PDX models, which were established from 
primary tumors and metastases obtained from the Univer-
sity of Washington Tissue Acquisition Necropsy program 
(15). Notably, the LuCaP PDX models were developed from 
biologically heterogeneous advanced prostate cancer tissues 
from primary and metastatic sites and include a range of 
tumors that vary in their response to castration, with some 
displaying castration sensitivity (15).

To identify cognate PDX models matched to the GEMM 
models used for drug predictions, we first generated RNA-seq 
profiles for five LuCaP PDX models that had been perturbed 
with multiple drugs and used these RNA-seq profiles to 
generate a PDX interactome (Supplementary Table S7A; see 
Supplementary Detailed Materials and Methods). Among all 
five baseline LuCaP PDX models, VIPER analysis identified 
LuCaP-73 as the most significantly matched to the GEMM-
DTs used herein (Fig. 7A). Furthermore, among the candidate 
drugs identified for the human tumors (see Fig. 5D), several 
were identified as significant MR inverters for the LuCaP-73 
PDX, including trametinib and panobinostat (Fig. 7B; Sup-
plementary Fig. S10B; Supplementary Table S7B). We there-
fore tested whether these two drugs could abrogate LuCaP-73 
viability in vivo. Indeed, both trametinib and panobinostat 
showed near-complete tumor growth inhibition (P < 0.0001; 
Fig.  7C–F). These findings provide further support for the 
translation of OncoLoop to a human prostate cancer context.

DISCUSSION
Predicting individualized drug efficacy in human patients 

remains a key challenge in precision medicine, and rela-
tively few approaches have been described to identify mod-
els that best recapitulate patient-relevant drug response (6). 
To address these challenges, we have developed OncoLoop, 
which uses quantitative protein activity–based metrics to 
first identify high-fidelity and preexisting models for indi-
vidual patient’s tumors, then predict drug efficacy for a 
given patient’s tumor and its cognate model, and lastly vali-
date the drug predictions in the preexisting cognate model. 
In the current study, we demonstrate the effectiveness of 
OncoLoop in the context of prostate cancer. In particular, 
by leveraging an extensive and diverse collection of GEMMs, 
we find that  >90% of patients with mCRPC in a published 
prostate cancer cohort are represented by at least one cognate 
GEMM-DT. We then use large-scale drug perturbation data 
from an MR-matched prostate cancer cell line to predict MR-
inverter drugs for the patients and their cognate models. The 

predicted MR-inverter drugs were experimentally validated in 
allografts from the GEMM-DT series, in a syngeneic model 
of metastasis, and in a PDX model of human prostate cancer. 
Notably, OncoLoop-predicted drugs enhanced the efficacy of 
clinically relevant drugs in both castration-resistant and met-
astatic contexts. These results suggest that OncoLoop could 
be a useful methodology to evaluate candidate drugs for 
clinical trials, including umbrella and basket trials, based on 
in vivo validated drug stratification across models represent-
ing distinct pharmacotypes (Fig. 7G). In addition, OncoLoop 
provides an accurate and versatile framework for both pre-
dicting and evaluating individualized drug treatments in real 
time. Notably, because all of the resources described herein 
are available to the research community, OncoLoop could be 
readily applied to prostate cancer in clinical practice.

Beyond prostate cancer, OncoLoop is readily generalizable 
for predicting both cognate models and drug sensitivity for 
other cancers, as well as in noncancer-related contexts. Nota-
bly, large-scale human, GEMM, and/or PDX cohorts are now 
available for many cancer types. In addition, we have already 
generated genome-wide perturbational profiles in cell lines, 
comprising representatives for 23 distinct tumor subtypes 
(see ref.  27 for partial coverage of the PanACEA database). 
Critically, the ability to stratify drug sensitivity in precisely 
identified molecular subtypes (pharmacotypes), if further 
validated, may lead to rapid design of basket and umbrella tri-
als, including using adaptive design approaches to efficiently 
replace baskets that fail to validate.

Nonetheless, there are also several caveats that will benefit 
from further refinements. First, despite the benefit of using 
FDA-approved drugs for rapid translation to clinical prac-
tice, the downside of focusing only on drugs that are FDA 
approved or in phase II/III trials, is that such drugs may not 
be optimal for targeting the MR proteins most relevant for the 
tumors. Therefore, in future studies, extension to additional 
experimental agents may expand the repertoire of effective 
drugs, especially considering the new classes of proteolysis-
targeting chimeras (52) and antisense agents (53). Further-
more, we note that the drugs tested in these studies in mice 
are not pharmaceutical grade as would be used in humans, 
which represents a potential limitation of the work. Addition-
ally, drug perturbation profiles are limited by the availability 
of appropriate cell lines MR-matched to human patients. For 
example, the current study does not adequately inform on 
drugs that target NEPC tumors because neither the LNCaP 
nor the DU145 cell line recapitulates the MR-activity signa-
ture of this subtype. This could be addressed in future studies 
by generating drug perturbation profiles from primary, NEPC 
patient-derived cells or organoids. Similarly, the focus of the 
current studies is on predicting drugs that target the tumor 
rather than stromal or immune cells, which could also be 
addressed in future studies using appropriate drug perturba-
tion analyses, as shown for instance for T regulatory cells (54).

Moreover, despite the encouraging results reported here, 
MR signature analysis and MR-inverter drug predictions are 
not 100% accurate, as is the case for most machine learning 
methods. This can depend on multiple causes. For instance, 
MR-activity inversion may lead to multiple distinct cell states, 
some of which may still be oncogenic and viable, as shown 
for bortezomib. In addition, as drug prioritization is based 
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on overall MR-inversion signature, the effect of MRs that are 
more likely to elicit essentiality is not directly accounted for.

Another key caveat is the largely heterogeneous nature of 
most tumors, which present molecularly distinct subpopula-
tions with potentially equally distinct drug sensitivity. Thus, 
when used to analyze bulk tumor profiles, OncoLoop may 
miss the opportunity to nominate drugs targeting the less 
represented subpopulations, thus selecting for drug-resistant 
ones and ultimately leading to relapse. A possible way to 
overcome this is to perform OncoLoop analyses at the single-
cell level, which should enable the prioritization of drugs 

for all detectable subpopulations (55). A second approach is 
to perform analysis on the posttreatment minimal residual 
tumor mass, which is likely highly enriched for resistant 
subpopulations (56, 57). Additionally, while OncoLoop pre-
dictions are transcriptome-based, recent results show that 
additional omics modalities, such as a patient’s mutational 
profile and protein structure, among others, can be readily 
integrated to further refine MR protein identification and 
drug prediction (22).

Beyond cancer, MR-based predictions have been validated 
in diseases as different as Parkinson’s (58), amyotrophic 

Figure 7.  Coclinical validation of OncoLoop-predicted drugs using a human PDX model. A and B, OncoLoop analysis of PDX models. A, Similar to 
Fig. 5A, three heat maps are shown, representing the fidelity and MR-inverter scores for four LuCaP PDX tumors (columns in left heat maps), five 
GEMM-DTs, and 28 drugs. The rectangles show a representative PGD-loop comprising a PDX (MC005/LuCaP-73), its cognate GEMM-DT (CMZ315), and 
two of the top-predicted drug candidates evaluated in the allograft models (panobinostat and trametinib). For visualization purposes, heat maps were 
clustered as in Fig. 5A. B, GSEA was used to compute panobinostat’s and trametinib’s MR-inverter P values for the MC005/LuCaP-73 model. (continued 
on next page)
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lateral sclerosis (59), alcohol dependency (60), and type II 
diabetes (61), suggesting direct OncoLoop applicability to 
such contexts, as long as appropriate drug perturbation data 
are available. Indeed, although human translation of drugs 
validated in a GEMM or PDX context has been reasonably 
effective in cancer, mouse models have largely failed to reca-
pitulate the effect of drugs on human disease. In this context, 
OncoLoop’s quantitative fidelity metrics may help to identify 
more appropriate mouse models for drug validation.

The current design of OncoLoop relies on MR-based pre-
dictions of model similarity and drug sensitivity. However, 
alternative approaches could also be tested using the same 
framework presented here. For instance, transcriptome-based 
approaches have shown promising results in predicting the 
sensitivity of human patients in a clinical context (62), whereas 
neural network–based methods trained on multiomics data 
have shown promising results in translating drug sensitivity 
assays from a training set of cell lines and mouse models to an 
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Figure 7. (Continued) C–F, Validation in the PDX model. C, The MC005/LuCaP-73 PDX was grown in nude mouse hosts and treated with predicted drugs 
or vehicle for the times indicated. (Created with BioRender.com.) D, Summary of changes in tumor volume over the treatment period. E, Summary of tumor 
weights following sacrifice. P values for C and  D were computed by one-way ANOVA at the last time point compared with vehicle control–treated models 
and adjusted for multiple hypothesis testing with Dunnett test. F, Representative images of final tumor sizes. G, Pharmacotype analysis: Identification of 
patient subsets predicted to be sensitive to the same drugs by cluster analysis. Four subtypes are identified, including patients with the highest predicted 
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independent test set of PDX models (63). Similarly, transcrip-
tome-based approaches for assessing model fidelity have also 
been proposed (64).

Taken together, our data show that OncoLoop may pro-
vide a valuable contribution to the emergent field of precision 
medicine by complementing rather than supplanting existing 
approaches based on its ability to couple effective drug and 
high-fidelity model predictions.

METHODS
GEMMs of Prostate Cancer

All experiments using animals were performed according to proto-
cols approved by the Institutional Animal Care and Use Committee 
(IACUC) at Columbia University Irving Medical Center (CUIMC). 
The GEMMs in this study utilize the Nkx3.1CreERT2/+ allele to activate 
an inducible Cre recombinase in the prostatic epithelium (35). The 
Nkx3.1CreERT2/+ allele was crossed with various other mouse alleles 
to achieve conditional deletion or conditional activation in the 
prostatic epithelium or with the Hi-Myc transgene (39). For lineage 
tracing, mice were further crossed with a conditionally activatable 
fluorescent reporter allele (Rosa-CAG-LSL-EYFP-WPRE; ref.  42). All 
mice were maintained on a mixed strain, predominantly C57BL/6 
background. Since the focus of our study is prostate cancer, only 
male mice were used. All multiallelic strains are available from The 
Jackson Laboratory (Supplementary Table S1A). Mice were induced 
to form tumors at 2 to 3 months of age by administration of 100 
mg/kg tamoxifen (Sigma-Aldrich T5648) in corn oil; control mice 
received corn oil alone. After tamoxifen induction, mice were moni-
tored 3 times weekly and euthanized when their body condition score 
was <1.5, or when they experienced body weight loss ≥20% or signs of 
distress, such as difficulty breathing or bladder obstruction. Surgical 
castration was performed at 1 to 10 months after tumor induction 
(Supplementary Table S1A). Tumor volume was monitored by MRI 
using a Bruker 9.4T Biospec Biospec Magnetic Resonance Imager 
(RRID:SCR_018054). Volumetric analysis was done using 3DSlicer 
software (http://www.slicer.org; RRID:SCR_005619).

At the time of sacrifice, tissues were collected and YFP-positive pro-
static tumors and metastases were visualized by ex vivo fluorescence 
using an Olympus SZX16 microscope (Ex 490–500/Em 510–560 fil-
ter). For histopathologic analysis, tissues were fixed in 10% formalin 
(Fisher Scientific), and hematoxylin and eosin and immunostaining 
were done using 3-μm paraffin sections as described (30, 34). Histo-
pathologic scoring of GEMM prostate cancer phenotypes is summa-
rized in Supplementary Table S1A and S1B.

Following protocols approved by IACUC at CUIMC, allografts were 
generated by transplanting freshly dissected prostate tissues from 
the GEMMs subcutaneously into the flank of male athymic nude 
mice (Hsd:Athymic Nude-Foxn1nu, Envigo; RRID:MGI:5652489). 
Allografted tumors were harvested when their size reached 2 cm or 
earlier if the body condition score of the host mouse was <1.5 or the 
mice exhibited signs of distress. A summary of allografted tumors is 
provided in Supplementary Table S1A. Mouse tumor organoids were 
generated as described (65). A summary of organoids is provided 
in Supplementary Table  S1A. A syngeneic model of metastasis was 
adapted from a previously established cell line from the prostate 
cancer bone metastasis of intact NPKEYFP mice (30).

Transcriptomic Analysis of GEMMs
RNA-seq data were generated from 136 GEMM-DTs or GEMM-

derived normal prostate (Supplementary Table S2A). RNA was pre-
pared by homogenization in TRIzol Reagent (Invitrogen), and total 
RNA was enriched for mRNA using poly-A pulldown. Samples were 
sequenced using an Illumina HiSeq 2500/4000 or NovaSeq 6000, and 

RNA-seq profiles were mapped to the mouse reference genome (ver-
sion GRCm38 mm10). A GEMM prostate cancer–specific regulatory 
network (interactome) was reverse engineered from the resulting 136 
RNA-seq profiles using ARACNe (29).

Subsequent analyses focused on a subset of 91 GEMM-DTs that 
recapitulated pathophysiologically relevant prostate cancer pheno-
types (Supplementary Table  S1B). The VIPER algorithm (23) was 
used to transform RNA-seq profiles of each GEMM-DT into dif-
ferential protein activity profiles. The resulting regulatory network, 
comprising regulons of 2,794 regulatory proteins, is summarized in 
Supplementary Table S2B.

PDX Model Analysis
Following protocols approved by IACUC at CUIMC, LuCaP PDX 

lines 73, 77, 78, 81, and 147 (15) were continuously maintained by a 
passage in male CIEA NOG mice (Taconic; RRID:IMSR_TAC:HSCFTL-
NOG). Xenografts were harvested when the tumor size reached 2 cm or 
earlier if the body condition score of the host mice was <1.5 or if they 
exhibited signs of distress. When the Xenograft tumors were 7 to 8 mm 
in diameter, the host mice were castrated or left intact (mock surgery). 
Three days later, the mice were treated with either vehicle or one of 13 
selected perturbagens, as described in ref. 20. On the afternoon of the 
fifth day of treatment, mice were euthanized and tumors were collected 
and snap-frozen in liquid nitrogen for a total of 140 samples (five mod-
els, 14 treatments, and two castration states). RNA-seq profiles were 
obtained as described above for the GEMM-DT cohort. A xenograft 
interactome was generated from the 120 highest quality xenograft-
derived RNA-seq profiles, as described for the GEMM cohort. Results 
are provided in Supplementary Table S7A.

Human Patient Cohort Analysis
For the analysis of human prostate cancer tumors and normal 

prostate, we collected n  =  790 RNA-seq profiles from published 
sources, including profiles from (i) 245 normal prostate tissues from 
the GTEx consortium (version 8, date 2017-06-05; ref. 47); (ii) 333 
treatment-naïve, clinically annotated primary prostate adenocarci-
noma samples in TCGA (25); and (iii) 212 metastatic biopsies from 
the SU2C cohort (26). The primary prostate tumor interactome was 
generated using the full set of 498 patients in the TCGA prostate 
cancer cohort (25); data are provided in Supplementary Table S3A. 
The SU2C interactome was generated using 212 patients for which 
RNA-seq data are available; data are provided in Supplementary 
Table  S3B. Differential protein activity was measured by VIPER 
analysis; protein activity profiles are provided in Supplementary 
Tables S3C and S3D.

OncoMatch Analysis
For this analysis, we used protein activity signatures from indi-

vidual GEMM-DT or PDX tumors to compute the NES of the 
25↑+25↓  most differentially active proteins, as assessed by VIPER, 
as in ref. 24. The aREA algorithm (23) was used to estimate NES 
that were converted to P values. The conservative Bonferroni method 
was used to correct for multiple hypothesis testing, and the value 
SF  =  −Log10P was used as an MR conservation-based fidelity score. 
Results for all TCGA and SU2C cohort samples are provided in Sup-
plementary Table S4A and S4B, respectively.

Drug Perturbation Analyses
LNCaP (RRID:CVCL_0395) and DU145 (RRID:CVCL_0105) human  

prostate cancer cells were obtained from the ATCC, which verifies 
their authenticity. Cells were maintained under Mycoplasma-free con-
ditions, and only low passage cells were used. These cell lines were 
identified as the pair with the optimal joint coverage of TCGA and 
SU2C cohorts (P ≤  10−5) and were thus selected for drug perturba-
tion assays. For drug perturbation analyses, the maximum sublethal 
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concentration (defined as its 48-hour EC20 concentration) was first 
defined for each drug. Following this, cells were seeded onto 384-well 
tissue culture plates, and approximately 12 hours later, compounds 
were added at their EC20. Cells were harvested 24 hours after pertur-
bation and subject to PLATE-seq analyses (48). The drug perturba-
tion data are provided in Supplementary Table S5B.

OncoTreat Analysis
This analysis was performed as described in ref. 21. Briefly, drug-

mediated MR inversion was independently assessed for each patient 
in the SU2C cohort and each GEMM as follows by assessing the NES 
of the sample’s MR-activity signature (25↑+25↓  most differentially 
active proteins). NES values were converted to P values and Bonfer-
roni corrected to account for multiple hypothesis testing. An efficacy 
score was computed SE = −Log10P and used to identify MR-inverter 
drugs (SE ≥ 5, corresponding to P ≤ 10-5). Results of OncoTreat analy-
ses for the SU2C and GEMM cohorts are provided in Supplementary 
Table S5C and S5D, respectively.

OncoLoop Analysis
The OncoLoop algorithm leverages a tripartite graph, TPG, with 

nodes representing patients (Pi), GEMM-DT (Gj) and drugs (Dk), 
respectively, and edges represent statistically significant GEMM–
patient fidelity score SM(Pi, jj) ≥ 5 (P ≤ 10-5), GEMM–drug MR-inverter 
score SE(Gj, Dk)  ≥  5 (P  ≤  10-5), and patient–drug MR-inverter score 
SE(Pi, Dk) ≥ 5 (P ≤ 10-5). All closed 3-node loops including a patient, a 
GEMM-DT, and a drug are considered statistically significant PGD-
loops. These are then ranked based on the Stouffer integration of the 
z-scores corresponding to the SM(Pi, Gj), SE(Gj, Dk), and SE(Pi, Dk) values 
of the loop, which can then be converted back to a P value. Results are 
summarized in Supplementary Table S6.

Preclinical Validation of OncoLoop-Predicted Drugs
Following protocols approved by IACUC at CUIMC, allograft 

models (NPp53mut CMZ315, NPp53mut CMZ163, and NPM CMZ150) 
were grown in the flanks of male athymic nude mice (Hsd:Athymic 
Nude-Foxn1nu, Envigo; RRID:MGI:5652489). The LuCaP-73 PDX 
was grown in R2G2 mice (B6;129-Rag2tm1FwaII2rgtm1Rsky/DwlHsd, 
Envigo, RRID:IMSR_ENV:HSD-021). Tumors were monitored by 
caliper measurement twice weekly, and tumor volumes were cal-
culated using the formula [Volume  =  (width)2  ×  length/2]. When 
tumors reached 100 to 200 mm3, mice with similar mean tumor 
volume were randomized into vehicle and treatment groups. For the 
syngeneic metastasis model, NPKEYFP cells (1 × 105) were injected into 
the left heart ventricle of C57BL/6 male mice (The Jackson Labora-
tory; cat. #000664, RRID:IMSR_JAX:000664). Two days after the 
intracardiac injection, mice were randomly assigned to the vehicle 
and treatment groups.

Pharmaceutical-grade (99% purity) compounds, namely, tem-
sirolimus (S1044), trametinib (S2673), panobinostat (S1030), borte-
zomib (S1013), cabazitaxel (S3022), and enzalutamide (S1250), were 
purchased from Sellekchem. The monoclonal antibody anti–PD-1 
(BE0146, RRID:AB_10949053) and the corresponding rat IgG2a 
antitrinitrophenol isotype control (BE0089, RRID:AB_1107769) 
were purchased from Bio X Cell. For each drug, the dosage, mode 
of delivery, and schedule were chosen based on previous reports as 
follows: enzalutamide (10 mg/kg; ref.  66), temsirolimus (20 mg/
kg; ref. 67), trametinib (1 mg/kg; ref. 68), panobinostat (15 mg/kg;  
ref.  69), bortezomib (1 mg/kg; ref.  70), cabazitaxel (10 mg/kg; 
ref. 71), and anti–PD-1 (10 mg/kg; ref. 72). Drugs were administered 
via intraperitoneal delivery 3 times/week in nonconsecutive days 
(temsirolimus, panobinostat, bortezomib, and cabazitaxel) or every 
72 hours (anti–PD-1), or by oral gavage 5 times/week in consecutive 
days (trametinib and enzalutamide). Tumors were harvested when 
the tumor size of vehicle-treated mice reached 2 cm or earlier if the 

body condition score of the host mice was <1.5 or if they exhibited 
signs of distress. Tumors were fixed in 10% formalin to be processed 
for histology or snap-frozen in liquid nitrogen. For the syngeneic 
metastasis model, mice were euthanized 12 days after intracardiac 
injection, and metastasis was analyzed by ex vivo fluorescence (30).

Statistical Analyses
Statistical analysis was performed using GraphPad Prism software 

(Version 9.3.1; RRID:SCR_002798) and R-studio (0.99.902, R v4.0.2; 
RRID:SCR_000432). Kaplan–Meier survival analysis was performed 
using a two-tailed log-rank test compared with the NP model. Com-
parison of frequencies was done using a two-tailed Fisher exact test 
or as described in figure legends. Subcutaneous tumor growth curves 
were analyzed using one-way ANOVA at the last time point compared 
with vehicle-treated tumors and adjusted for multiple compari-
sons with the Dunnett test. Metastasis was analyzed using one-way 
ANOVA compared with vehicle-treated group and adjusted for mul-
tiple comparisons with the Dunnett test. All bars show the mean and 
error bars the SD. No statistical method was used to predetermine 
the sample size used for in vivo experiments.

Data Accession
The following datasets are deposited in the Gene Expression 

Omnibus (GEO): (i) the mouse gene expression profiles (raw and 
normalized data; GSE186566); (ii) the human PDX gene expression 
profiles (raw and normalized data; GSE184427); and (iii) the PLATE-
seq data for the drug perturbation profiles in both LNCaP and 
DU145 cells (GEO199800).

Complete details of all materials and methods are provided in the 
Supplementary Materials.
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