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INTRODUCTION
A major goal of precision cancer medicine (PCM) is to 

improve clinical outcomes by leveraging the molecular-level 
properties of a tumor—as encoded by mutational, gene 
expression, epigenetic modification, and proteomic profiles—
to accurately predict sensitivity to candidate therapeutic 
agents. Application of PCM principles may help generate 
responder-enriched cohorts for clinical trials when predic-
tions are conserved across a substantial fraction of patients 
(1, 2), and even help prioritize personalized treatments on an 
individual patient basis.

Systematic application of the current PCM paradigm is 
largely predicated on two complementary approaches. The 
first one (oncogene addiction) aims to identify targeted thera-
pies based on the presence of activating genetic alterations in 
druggable oncoproteins (3); the second (immunotherapy) is 
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based on the discovery that specific tumor-initiated immu-
nosuppressive programs can be abrogated by pharmaco-
logic targeting of immune checkpoints or by sensitizing the 
immune system to tumor antigens (4).

Despite the remarkable clinical success of these approaches 
within specific tumor subtypes (5), many tumors may lack 
actionable genetic alterations, fail to respond to therapy, or 
develop drug resistance, suggesting an acute need for comple-
mentary approaches targeting nononcogene tumor depend-
encies (6). In particular, despite its critical role in tumor 
subtype stratification, use of transcriptome-based approaches 
in precision medicine has lagged.

We and others have shown that, within each tumor his-
tology, cancer cells adopt only a relatively limited, discrete, 
and remarkably stable repertoire of molecularly distinct 
transcriptional states (7). These states are mechanistically 
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controlled by tightly autoregulated tumor-checkpoint mod-
ules (TCM; ref. 8), comprising a small, highly conserved set 
of master regulator (MR) proteins responsible for canalizing 
the effect of mutations in their upstream pathways (7–9). 
About 30% of MR proteins were shown to represent tumor-
essential, nononcogene dependencies, either individually (8) 
or in combination (10, 11). Indeed, genetic (10–12) or phar-
macologic (13–15) inhibition of MR proteins has been shown 
effective in inverting the activity of TCM MRs, resulting in 
the abrogation of tumor viability in vitro and in vivo. TCM 
inversion can be effectively achieved due to their hypercon-
nected, heavily autoregulated nature, supporting their ability 
to behave as homeostatic on/off control modules (ref.  12; 
bioRxiv 2020.10.27.357269). As such, individual MRs—and 
the TCMs they comprise—represent an actionable class of 
nononcogene dependencies.

In this study, we test two approaches to leverage these con-
ceptual advances for therapeutic purposes, by targeting either 
individual, pharmacologically actionable candidate MRs with 
a high-affinity inhibitor (OncoTarget), or the entire TCM 
(OncoTreat). These methods rely on the ability to accurately 
measure the transcriptional activity of the regulatory proteins 
that maintain tumor cell state, by RNA-sequencing (RNA-seq) 
profile analysis using the virtual proteomics by enriched regu-
lon (VIPER) algorithm (16), which has been shown to compare 
favorably with antibody-based protein measurements (17).

Specifically, OncoTarget uses VIPER to identify the most 
aberrantly activated proteins for which a high-affinity inhibi-
tor is already available, thus representing a straightforward, 
mutation-agnostic extension of the oncogene addiction para-
digm. Indeed, aberrant protein activity can result not only 
from activating mutations in the encoding gene but also 
from mutations and signals in upstream pathways (7), as 
well as from autocrine, paracrine, and endocrine signals (18). 
In contrast, OncoTreat leverages large-scale perturbational 
profiles—i.e., RNA-seq profiles representing the cell’s response 
to drug treatments—in MR-matched cell lines selected as high-
fidelity (cognate) models of a patient tumor. These profiles 
support direct experimental assessment of context-specific 
drug mechanism of action (MoA) and TCM-activity inversion 
in drug-treated versus vehicle control–treated tumor cells (13). 
Compared with other related efforts, such as SynergySeq (19), 
which predict drug sensitivity based on the greatest divergence 
between drug perturbation and tumor transcriptomic signa-
tures, our methods capitalize on robust network-based assess-
ment of functional protein activity and are built on a broad 
mechanistic framework incorporating insights on tumor-
specific essentiality of MR proteins. Further, we leverage a 
careful selection of cognate models to assess context-specific 
drug MoA, and, most critically, we provide in vivo validation.

In this first-in-class application of MR-based tools to pre-
dict drug sensitivity, we designed a tumor- and mutation-
agnostic noninterventional clinical study to enroll patients 
with advanced malignancies, across multiple histologies, who 
had progressed on several lines of therapy (the N of 1 study 
at Columbia University, IRB-AAAN7562). We present a series 
of results from the treatment of early passages of the first 
seven patient-derived xenograft (PDX) models established, 
which were used to assess the overall preclinical efficacy of 
OncoTarget- and OncoTreat-predicted drugs. For the latter, 

we also performed pharmacodynamic assays to assess in 
vivo recapitulation of TCM-activity inversion, as predicted 
from in vitro perturbations. Our results demonstrate that 
OncoTarget and OncoTreat are highly predictive of anti-
tumor drug activity in vivo, supporting further development 
of these clinically actionable tests—both of which are New 
York and California Department of Health approved and 
Clinical Laboratory Improvement Amendments (CLIA) com-
pliant [Columbia University Irving Medical Center (CUIMC) 
pathology department]—for biomarker-driven PCM clinical 
trials. We discuss the strengths, limitations, and practical 
challenges encountered in implementing and validating these 
tools in a clinical context.

RESULTS
Overview of Study Design

To assess OncoTarget and OncoTreat’s ability to predict 
drug sensitivity in tumors from pretreatment RNA-seq profile 
analysis, we designed an innovative, proof-of-concept clinical 
study with a preclinical endpoint. The N of 1 study enrolled 
patients with advanced malignancies refractory or intolerant 
to standard-of-care treatment, including several rare tumors 
(Supplementary Table  S1). Due to trial design, selected par-
ticipants had generally progressed on most if not all standard-
of-care therapies by time of enrollment, and lacked actionable 
genetic alterations suggesting potential targeted drug efficacy.

Clinically indicated biopsies or tumor resections were per-
formed at the request of the treating oncologist; consent was 
required to allow a portion of the fresh tumor tissue from 
biopsies with ≥70% cellularity to be processed for RNA-seq 
profiling and transplantation into immunodeficient mice. 
Here, we report the results of 35 distinct drug arms—includ-
ing 21 OncoTarget-predicted and 22 OncoTreat-predicted 
drugs, 8 of which were predicted by both methods—in the 
first seven, consecutively established PDX models that could 
be expanded for in vivo drug testing. Given its research nature, 
the protocol did not require patients to be treated with pre-
dicted drugs. Instead, subsequent treatment was chosen by 
the patient’s oncologist using currently available approaches 
for cancers that have progressed on standard treatments, e.g., 
mutational profiling, off-label drug use, and referral to thera-
peutic clinical trials when eligible.

Note that the study was neither designed nor sufficiently 
powered to assess the efficacy of each individual predicted 
drug. Rather, our goal was to validate the overall ability of 
the two methodologies (tests) to predict drugs that elicit in 
vivo response.

The seven PDX models included three basal-like breast 
cancers (BLBC; BC-32398, BC-97359, and BC-50291), a 
pancreatic ductal carcinoma (PDA; PAC-05647), a colon 
adenocarcinoma (COAD; CAR-23659), a KITWT/PDGFRWT 
gastrointestinal stromal tumor (GIST) harboring both a 
KRASG12D mutation and a germline SDHB deletion (GIST-
81050), and a recurrent WHO grade II anaplastic meningi-
oma (MEN; CNS-16474). Clinical characteristics of the seven 
patients are summarized (Fig. 1A), including extensive prior 
therapies and the results of targeted genomic sequencing, 
when performed at the discretion of the treating oncologist. 
For two patients (CNS-16474 and PAC-05647), mutational 
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Figure 1.  N-of-1 study overview. A, Clinical characteristics, prior systemic treatment, and tumor genomic profiling (if available) for the seven subjects. 
B, Study conceptual diagram. I, Adults with advanced solid tumors with progression or intolerance to standard treatments are enrolled. Fresh biopsy tis-
sue is partitioned for clinical pathology review, RNA-seq, and xenografting into immunodeficient mice (PDX). Engrafted PDX tumors are also profiled by 
RNA-seq and VIPER to confirm fidelity to the patient-derived tumor (OncoMatch; see Methods). II, High-throughput drug screens have been completed 
in cognate cell lines with high fidelity to distinct cohorts of patient tumors based on recapitulation of MR protein activity (Bonferroni P < 10−10 by 
OncoMatch), collectively comprising the PanACEA database. Cells were perturbed at sublethal drug concentrations, and VIPER analysis of postpertur-
bation RNA-seq allows for de novo mechanism inference for each drug in each cellular context. III, VIPER analysis of the patient tumor identifies top 
MR proteins and drugs are predicted by two methods. First, individual activated druggable MR proteins, e.g., protein kinases and epigenetic regulatory 
enzymes, are identified (Bonferroni P < 10−5 by OncoTarget). Second, using the best matched cell line(s) in PanACEA, drugs are ranked based on their 
inverting effect on the top MR proteins, i.e., TCM-inverting drugs (Bonferroni P < 10−5 by OncoTreat). IV, Up to six predicted drugs are selected for experi-
mental validation, based on OncoTarget or OncoTreat P-value and a number of practical selection criteria. Mice from early PDX passages (usually P1) are 
randomized into candidate drug arms, negative control drug arms, and a vehicle control arm.
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profiling was not available because the oncologist did not 
expect these tumor types to harbor clinically actionable 
mutations. Notably, four of the seven subjects had progressed 
on at least three lines of treatment before enrollment and all 
seven represented aggressive, drug-resistant tumors.

Due to the constraints associated with the expansion and 
use of early PDX passages for preclinical therapeutic stud-
ies, we applied several practical selection criteria to further 
prioritize predicted drugs for in vivo validation. Specifically: 
(a) Only drugs classified as antineoplastic agents were con-
sidered, (b) drugs were eliminated if the patient had been 
previously treated with them, (c) when perturbation profiles 
were available from suitable models—i.e., for GIST, menin-
gioma, and breast cancer—OncoTreat-predicted drugs were 
selected over OncoTarget-predicted ones with comparable 
P values, to ensure an overall balanced number of tested pre-
dictions from the two methods, (d) drugs predicted for the 
patient but not for the corresponding PDX model were elimi-
nated, and (e) when multiple inhibitors sharing the same 
canonical mechanism were identified—e.g., multiple HDAC 
or topoisomerase II inhibitors—only the top FDA-approved 
and/or the most statistically significant one was selected.

The 35 unique patient-specific drugs prioritized for in vivo 
validation, as well as prediction rationale and dosing sched-
ule, are summarized in Supplementary Table S2 (see Supple-
mentary Table S3 for further details on drug prediction and 
selection in each of the seven models).

OncoTarget and OncoTreat Methodology
We have developed two complementary, RNA-based assays 

to transform VIPER-based (16) tumor sample-specific protein 
activity profiles into actionable drug response predictions 
(see schematics in Fig. 1B; Supplementary Fig. S1A–S1C).

The first one (OncoTarget) identifies aberrantly activated 
proteins (threshold P ≤ 10−5, Bonferroni corrected, as meas-
ured by VIPER) for which a high-affinity inhibitor is currently 
available (see Methods). To assess target actionability, we ana-
lyzed DrugBank (RRID:SCR_002700), the SelleckChem data-
base (RRID:SCR_003823), published literature, and public 
information from drug development pipelines, resulting in a 
curated list of 180 proteins representing validated, high-affin-
ity targets of clinically relevant small-molecule compounds 
(Supplementary Table  S4). These include proteins that are 
rarely if ever mutated in cancer, such as topoisomerases, chro-
matin remodeling enzymes, and proteins aberrantly activated 
by autocrine, paracrine, or endocrine signals.

The second one (OncoTreat) leverages a large compendium 
of RNA-seq profiles, generated to represent the transcrip-
tional response of cell lines to a comprehensive repertoire 
of antineoplastic agents. These allow the identification of 
compounds capable of inverting the transcriptional activ-
ity of a TCM module (TCM-inverters)—as defined by the 25 
most activated (25↑) and 25 most inactivated (25↓) candidate 
MR proteins in a patient tumor—at a conservative statistical 
significance threshold [P  ≤  10−5, Bonferroni corrected, by 
one-tailed analytic-rank based enrichment analysis (aREA); 
Fig. 1B; Supplementary Fig. S1C; refs. 13, 16; see Methods]. 
As such, rather than using a priori knowledge, OncoTreat 
predicts TCM-inverter drugs based on drug MoA assessed de 
novo from experimental perturbational assays—i.e., based on 

the differential activity of 2,556 regulatory proteins in drug-
treated versus vehicle control–treated cells.

The number of candidate MRs in a TCM was selected 
based on the average number of MRs necessary to integrate 
the effect of genetic alterations in their upstream pathways, 
as assessed in ref. 8. Specifically, we had reported that, for 
the vast majority of tumor subtypes in The Cancer Genome 
Atlas (TCGA), there is rapid saturation of mutational events 
in pathways upstream of the first 1 to 100 candidate MRs of 
each individual tumor, with 50 MRs sufficient to account 
for 80% of all mutations in all but 5 of 20 tumor types ana-
lyzed (COAD, HNSC, SKCM, STAD, and OV). However, we 
also showed that drug prediction is extremely robust and 
reproducible for any TCM size ranging from n =  10 to 200 
activated and inactivated MRs, with mean Spearman pairwise 
correlation ranging from rs = 0.89 in GIST-81050 to rs = 0.98 
in BC-32398 (Supplementary Fig. S2A–S2E).

Cell Line and PDX Models
Drug MoA and TCM-inversion potential were assessed 

based on perturbational profiles in selected, high-fidelity 
(cognate) cell lines. These were identified based on their 
ability to recapitulate the TCM-activity signature—i.e., the 
activity of the top and bottom 25 most differentially active 
MRs—of the greatest fraction of a histology-matched patient 
cohort. Thus, cognate cell lines are meant to represent a 
biological surrogate of the tumor of interest only in terms 
of providing an optimal in vitro context to assess tumor-rele-
vant drug mechanisms of action, thus maximizing statistical 
power. Specifically, assessing MR protein activity decrease or 
increase following drug perturbation is best accomplished in 
cells where these are already significantly activated or inacti-
vated, respectively. Likewise, to account for potential tumor 
drift effects in PDX passaging, we assessed whether the PDX 
models used in the study also recapitulated their correspond-
ing patients’ TCM-activity signatures. As such, we assess 
model fidelity to a human tumor based on TCM MR enrich-
ment (i.e., top 25↑+25↓) of the human tumor in differentially 
active and inactive proteins in the model, respectively (Onco-
Match analysis, refs. 13, 20; bioRxiv 2019.677435; threshold 
Bonferroni P ≤ 10−10; see Methods).

OncoTreat Cell Line Fidelity Assessment
To illustrate the selection process, in Supplementary 

Fig. S3A we show the MR-based fidelity of the top 12 breast 
cancer cell lines identified as candidate cognate models of 
BLBC tumors in TCGA, as annotated by PAM50 classifica-
tion (21, 22). Cell lines were selected from a total of 97 pro-
filed breast cancer cell lines, unbiased to receptor status or 
PAM50 classification, as part of a comprehensive repository 
that included both the Cancer Cell Line Encyclopedia (CCLE; 
ref. 23) and the Genentech Cell Line Screening Initiative (gCSI; 
ref. 24). BT20 emerged among the top five candidates based 
on the number of patient tumors (78 of 173) whose TCM-
activity signature it recapitulated (Bonferroni P ≤  10−10, by 
OncoMatch). Because cognate cell lines are identified strictly 
based on TCM-activity recapitulation, we do not expect them 
to necessarily recapitulate other phenotypic or even transcrip-
tomic characteristics of their matched patients. For instance, 
although none of the top 12 cell lines identified for patients 
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with BLBC would be classified as luminal, several of them 
were claudin-low or mesenchymal-like (e.g., MDAMB231, 
SUM159PT, BT549, and CAL120), unclassifiable (e.g., BT20, 
HCC1395), or even ER-negative, HER2-amplified/enriched 
(e.g., JIMT1, HCC1954) by transcriptome-based classifica-
tions (25, 26). This is consistent with the fact that patients 
with BLBC in TCGA presented conserved activity of the 
most differentially active MRs, regardless of claudin or HER2 
status (7).

In Supplementary Fig.  S3B, we show the fidelity of four 
cognate cell lines that were used to generate drug perturbation 
profiles to support OncoTreat analyses for five study patients. 
Although ASPC1 was also identified as a high-fidelity model 
for the pancreatic tumor in the study, ASPC1-based perturba-
tion profiles were not completed in time for drug prediction 
and in vivo validation. Nonetheless, for completeness, we are 
sharing the ASPC1 drug perturbation data as part of this 
study. As shown, BT20 represents a high-fidelity model for 
tumor BC-32398 [normalized enrichment score (NES), 14.5, 
P  =  10−48] and BC-97359 (NES 8.0, P  =  10−15), but not for 
BC-50291 (NES −3.9, P = 1); both GIST cell lines, GIST430 and 
GISTT1, were identified as high-fidelity models for GIST-81050 
(P < 10−40) despite not harboring the patient SDHBDel/KRASG12D 
alterations, but rather canonical KIT mutations; finally, the 
meningioma cell line IOMM was borderline for CNS-16474 
(NES 3.3, P = 0.0005).

OncoTreat Perturbation Profile Generation
On average,  ∼350 drugs were profiled in each cognate 

cell line model, including 138 FDA-approved antineoplas-
tics, about 170 late-stage experimental drugs in phase II 
and III oncology clinical trials, as well as a variable number 
of additional compounds from diverse libraries with cell 
line-specific EC50  ≤2 μmol/L (Supplementary Table  S5; see 
Methods). Cells were harvested at 24 hours following per-
turbation with each compound at two sublethal concentra-
tions—the 48-hour EC20 and one tenth of this concentration, 
as determined by 10-point dose–response curves—as well as 
at 6 hours (in selected cell lines) to assess early MR activity 
changes. We used the highest sublethal drug concentration to 
reveal signatures optimally reflective of the drug’s MoA rather 
than nonspecific effector proteins in stress or death pathways 
(27, 28). To avoid testing drugs at nonphysiologically relevant 
concentrations, we also capped concentrations at their CMax, 
defined as the peak serum concentration for the drug’s maxi-
mum tolerated dose, from published pharmacokinetic stud-
ies in humans, when available.

Multiplexed, low-depth (1–2M reads) RNA-seq profiles 
were generated for each compound using the PLATE-seq 
technology (29), which supports low-cost, fully automated 
pooled library generation from 96 or 384-well plates. Drug 
MoA—representing the drug-mediated differential activity of 
all regulatory proteins—was then assessed by VIPER analysis 
of drug-treated versus vehicle-treated (DMSO) samples. In 
Fig. 2A, as a representative example, we show the hierarchical 
clustering of VIPER-assessed drug MoA in BT20. Interest-
ingly, although several MoA-related drugs were identified 
within the same clusters (e.g., topotecan and irinotecan in 
cluster 1, sorafenib and vandetanib in cluster 5, and dasat-
inib, ponatinib, and nilotinib in cluster 6), several drugs 

induced similar differential protein activity profiles, despite 
having distinct high-affinity targets (e.g., thioguanine, a gua-
nine analogue; sorafenib, a multikinase inhibitor; and vori-
nostat, a pan-HDAC inhibitor, in cluster 5). This suggests 
that cellular networks in BT20 cells may effectively canalize 
drug MoA toward a small number of relatively distinct cel-
lular responses. Additionally, as shown, several drugs pro-
duced highly conserved MoA at multiple concentrations (e.g., 
topotecan at 0.076 and 0.76 μmol/L, crizotinib at 0.72 and 
7.2 μmol/L, flubendazole at 1.44 and 14.5 μmol/L, among sev-
eral such examples, suggesting high reproducibility of these 
assays, as also previously shown; refs. 13, 29).

Drug MoA profiles from the appropriate cognate cell 
line(s) were used to generate OncoTreat predictions for 
patient and PDX tumors. All regulatory proteins represented 
in the drug MoA were ranked from most inhibited to most 
activated, thus providing an optimal reporter assay to assess 
TCM inversion. TCM-inversion assessment in vitro for the 22 
OncoTreat-predicted drugs that were prioritized for in vivo 
validation is shown in Fig. 2B.

PDX Fidelity Assessment
Several groups have described clonal drift that occurs 

with sequential passages in PDX models (30). As a result, to 
minimize drift, we performed all therapeutic studies in the 
earliest feasible passage, P1–P5. Additionally, prior to com-
mencing therapeutic testing, we assessed both model fidelity 
and patient/PDX conservation of drug prediction, as pro-
posed in ref. 31. Following successful engraftment of tumors 
(P0 passage), we performed RNA-seq and subsequent VIPER, 
OncoTarget, and OncoTreat analyses to determine (a) the 
MR-based fidelity of the PDX tumor to the patient tumor and 
(b) conservation of drug predictions. Drugs predicted from 
patient sample analysis, but not predicted by analysis of the 
PDX, were used only in the therapeutic study if alternative 
options were not available.

Six of the seven PDX models, GIST-81050, BC-32398, 
CAR-23659, BC-97359, CNS-16474, and PAC-05647, met the 
predefined fidelity threshold (Bonferroni P ≤ 10−10, by Onco-
Match), with NES ranging from 13.8 to 17.3 (Fig.  3A; Sup-
plementary Fig. S4). In fact, in GIST-81050 and CAR-23659 
there was almost perfect fidelity to patient TCM activity, 
whereas in BC-32398, BC-97359, CNS-16474, and PAC-05647 
there were a handful of MRs with different activity rank 
between patient tumor and PDX. In BC-50291, however, 
there was no appreciable fidelity (P = 0.89). Consequently, in 
BC-50291 we tested drug predictions for the patient tumor 
that were not conserved in the PDX.

OncoTarget and OncoTreat Predict Treatment 
Response in PDX Models

A total of 35 individual drugs predicted by the analysis were 
evaluated in individual PDX therapeutic arms—including 
21 OncoTarget-predicted and 22 OncoTreat-predicted, 8 of 
which were predicted by both methods. In a few cases, the 
same drug was predicted and tested in more than one model. 
After the expansion of PDX models for the therapeutic study, 
animals were enrolled once tumor volumes reached  ∼100 
mm3. Models were treated, and tumor volume measurements 
were recorded up to a fixed end-of-study time point with a 
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Figure 2.  Drug context–specific mechanism and TCM inversion. A, As an illustrative example, we show a heat map for the 24-hour drug perturbation 
in the BT20 breast cancer cell line. The heat map shows the differential protein activity profile of 38 drugs in BT20 cells compared with vehicle control, 
annotated by their canonical mechanism and the two sublethal concentrations (EC20 and one tenth of EC20) screened. VIPER-monitored proteins are 
shown in the columns, and we use unsupervised hierarchical clustering to highlight drugs that induce a similar transcriptional response, i.e., context-
specific observed MoA. (continued on following page)

Drug.category

Alkylating agent

Anthracycline

Antiandrogen

Antiestrogen

Antifolate

Apoptosis inducer

Cytotoxic antibiotic

DNA methylation inhibitor

Endothelin receptor inhibitor

HDAC inhibitor

HSP90 inhibitor

Immunomodulatory IMiD

Microtubule inhibitor

MTOR inhibitor

NFKB inhibitor

Non−RTK inhibitor

Other

PARP inhibitor

PI3K inhibitor

Proteasome inhibitor

Purine analogue

Pyrimidine analogue

RTK inhibitor

Reduction/oxidation inhibitor

Ser/Thr kinase inhibitor

Smoothened inhibitor

Topoisomerase inhibitor

A BT20 24-hour drug perturbation

N.E.S.
−3 −2 −1 0 1 2 3C1

C2

C3

C4

C5

C6

C7

C8

Topotecan 0.076 µmol/L
Topotecan 0.76 µmol/L
Irinotecan 7.08 µmol/L
Etravirine 0.44 µmol/L
Bosutinib 0.48 µmol/L
Thioguanine 0.22 µmol/L
Crizotinib 7.16 µmol/L
Crizotinib 0.72 µmol/L
Flubendazole 14.6 µmol/L
Paclitaxel 0.04 µmol/L
Flubendazole 1.44 µmol/L
Teniposide 0.1 µmol/L
Clofarabine 0.24 µmol/L
Irinotecan 0.72 µmol/L
Epirubicin 0.2 µmol/L
Clofarabine 2.4 µmol/L
Daunorubicin 0.22 µmol/L
Chlorpromazine 8.48 µmol/L
Chlorpromazine 0.84 µmol/L
Doxorubicin 0.04 µmol/L
Daunorubicin 0.022 µmol/L
Teniposide 1 µmol/L
Paclitaxel 0.004 µmol/L
Doxorubicin 0.4 µmol/L
Epirubicin 0.02 µmol/L
Vorinostat 2.88 µmol/L
Gemcitabine 1.92 µmol/L
Gemcitabine 0.194 µmol/L
Sunitinib 0.76 µmol/L
Cabozantinib 0.52 µmol/L
Albendazole 0.56 µmol/L
Cabozantinib 5.32 µmol/L
Etoposide 0.88 µmol/L
Idarubicin 0.008 µmol/L
Vandetanib 0.166 µmol/L
AZD7762 0.03 µmol/L
Ivermectin 0.52 µmol/L
Vorinostat 0.286 µmol/L
Thioguanine 2.2 µmol/L
Mitoxantrone 0.018 µmol/L
BGJ398 0.4 µmol/L
Buparlisib 0.116 µmol/L
Nilotinib 0.22 µmol/L
Sorafenib 0.52 µmol/L
Afatinib 0.104 µmol/L
Afatinib 1.04 µmol/L
Dasatinib 0.4 µmol/L
Dasatinib 0.04 µmol/L
Sorafenib 5.08 µmol/L
Ivermectin 5.16 µmol/L
Vandetanib 1.68 µmol/L
Ponatinib 0.76 µmol/L
Mitoxantrone 0.18 µmol/L
Ceritinib 0.106 µmol/L
BGJ398 3.96 µmol/L
Nilotinib 2.2 µmol/L
AZD7762 0.306 µmol/L
Ceritinib 1.08 µmol/L
Etoposide 9 µmol/L
Idarubicin 0.084 µmol/L
Buparlisib 1.16 µmol/L
Temsirolimus 6.76 µmol/L
Temsirolimus 0.68 µmol/L
Carfilzomib 0.012 µmol/L
Bortezomib 0.044 µmol/L
Carfilzomib 0.116 µmol/L
Bortezomib 0.004 µmol/L
Albendazole 0.056 µmol/L
Estradiol 2 µmol/L
Estradiol 20 µmol/L
Ponatinib 7.68 µmol/L
Auranofin 2.64 µmol/L
Auranofin 0.264 µmol/L
Etravirine 4.32 µmol/L
Sunitinib 7.52 µmol/L
Bosutinib 0.046 µmol/L
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Figure 2. (Continued) B, Perturbation screens in five 
relevant cell lines were used to generate the OncoTreat 
drug predictions we report on here. OncoTreat uses the 
context-matched de novo drug mechanism information 
to identify top TCM-inverter drugs. For each patient ID 
(e.g., GIST-81050) and predicted drug (e.g., fludarabine), 
we show the placement of the 25 most activated (red 
bars) and 25 most inactivated (blue bars) patient tumor 
MR proteins on the drug-induced signature in the cog-
nate cell line(s)—proteins sorted left to right from the 
most differentially inactivated to the most activated 
in drug-treated vs. vehicle control–treated cells. For 
each model and drug, we report the concentrations 
whose effect was averaged to rank protein activity, the 
NES assessing TCM inversion in the drug signature, as 
measured by the aREA algorithm, and the associated P 
value. Negative NES indicates TCM inversion. All but two 
predictions met the predefined significance threshold 
(Bonferroni P < 10−5), with clofarabine and thioguanine 
borderline predictions for BC-32398. For the pancreatic 
tumor (PAC-05647), drug perturbation profiles in the 
ASPC1 cell line were not available in time to predict 
drugs for in vivo testing. Thus, predictions were based 
on OncoTreat analysis using nonmatched cell line mod-
els, BT20, GIST430, GISTT1, and IOMM, and integrated 
using the Fisher method.

GIST.81050
Drug [concentration(s) screened]

Integrated MR−Reversal NES
Fludarabine

[0.026; 0.26 μmol/L]
NES: −13.54; P: 2.03e−40

Topotecan
[0.006; 0.05 μmol/L]

NES: −5.04; P: 7.36e−07
Selumetinib

[0.008; 0.084 μmol/L]
NES: −10.14; P: 2.6e−23

Teniposide
[0.13; 1.3 μmol/L]

NES: −12.42; P: 2.1e−34
Daunorubicin

[0.026; 0.26 μmol/L]
NES: −6.75; P: 3.45e−11

BC.32398
Irinotecan

[0.72; 7.1 μmol/L]
NES: −13.57; P: 9.57e−41

Clofarabine
[0.24; 2.4 μmol/L]

NES: −4.03; P: 0.000164
Daunorubicin

[0.022; 0.22 μmol/L]
NES: −6.22; P: 1.86e−09

Etoposide
[0.88; 9 μmol/L]

NES: −11.51; P: 8.43e−30
Thioguanine

[0.22; 2.2 μmol/L]
NES: −3.28; P: 0.00259

BC.97359
Irinotecan

[0.72; 7.1 μmol/L]
NES: −6.41; P: 1.11e−09

CNS.16474
Tivantinib

[0.53 μmol/L]
NES: −7.9; P: 5.83e−14

Ponatinib
[0.11 μmol/L]

NES: −7.65; P: 3.31e−13
Abiraterone
[1.3 μmol/L]

NES: −6.25; P: 3.69e−09
Vismodegib

[20 μmol/L]
NES: −7.59; P: 4.33e−13

Homoharringtonine
[0.0028 μmol/L]

NES: −9.7; P: 1.2e−20
Doxorubicin

[0.0029 μmol/L]
NES: −10.43; P: 1.43e−23

PAC.05647

[0.026; 0.032; 0.038; 0.26; 0.32 μmol/L]
NES: −14.16; P: 5.28e−44

Belinostat

Fludarabine

[0.11 μmol/L]
NES: −16.01; P: 1.07e−55

Teniposide
[0.0033; 0.1; 0.13; 1; 1.3 μmol/L]

NES: −9.62; P: 1.22e−20

BC.50291
Paclitaxel

[0.004; 0.04 μmol/L]
NES: −8.3; P: 3.04e−16

Temsirolimus
[0.68; 6.8 μmol/L]

NES: −8.54; P: 4.96e−17

B

25↑ MRs 25↓ MRsPatient TCM:
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OncoTreat
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1n (%)
2Fisher exact test
3n = 1 unevaluable for response

1Fisher exact test
2No cases demonstrated on objective response.

4n = 3 unevaluable for response
5n = 3 unevaluable for response

19 (76%)
5 (20%)

0.02

OncoTarget vs. OncoTreat vs. both 0.02
0.005
0.60
0.16

<0.001
<0.001

0.61
0.50
0.43
0.32
0.76
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median of 29 days (range, 21–30 days). A waterfall plot of 
the response of each individual mouse, grouped by PDX 
model, to prioritized and negative control drugs is shown in 
Fig. 3B and C and comparisons summarized in Fig. 3D and E; 
responses are summarized in Supplementary Table S6. Over-
all, across all predictions, disease control—comprising stable 
disease (SD), partial response (PR), or complete response 
(CR)—was observed for 30 of 35 predictions (85.7%).

We evaluated overall treatment response, at the end of treat-
ment, for drugs that were OncoTarget-predicted, OncoTreat-
predicted, and predicted by both methods. Compared with 
vehicle control, there were significant differences in disease 
control rate (DCR)—defined as the rate of SD +  PR +  CR—
and objective response rate (ORR)—defined as the rate of 
PR  +  CR—for both OncoTarget-predicted (PDCR  <  10−3, 
PORR  =  0.03, by Fisher exact test) and OncoTreat-predicted 
(PDCR < 10−3, PORR = 0.01; Fig. 3B–E) drugs. Drugs predicted 
by both had response rates comparable to drugs predicted by 
just one methodology (DCR = 76%, n = 19/25; ORR = 20%, 
n =  5/25). Due to unanticipated toxicity possibly related to 
study treatment (e.g., tumor ulceration in a breast cancer 
PDX), 3 mice were unevaluable for response in the Onco-
Target cohort (BC-97359, n = 2 for MK-2206 arm, n = 1 for 
panobinostat arm), whereas 1 mouse was unevaluable in the 
OncoTreat cohort (BC-97359, n = 1 for irinotecan arm), and 3 
mice were unevaluable for response in the Both cohort (GIST-
81050, n = 2 for daunorubicin arm, n = 1 for topotecan arm). 
Although cautioning that the study was neither designed 
nor sufficiently powered to evaluate the efficacy of individual 
drug predictions, for completeness, we provide growth curves 
for each drug (Supplementary Fig. S5A–S5C).

As a set of appropriate negative controls, we evaluated 
response to randomly selected antineoplastic drugs that 
were not statistically significant by either OncoTarget or 
OncoTreat (when available) analysis (i.e., P  =  1 from both 
methods). We note that these are not true random con-
trols but rather potential false-negative predictions meant 
to assess the algorithms’ predictive power. Four PDX models 
(GIST-81050, CAR-23659, PAC-05647, and BC-50291) were 
thus treated with 13 negative control drugs (Supplementary 
Table  S2) and vehicle control. To avoid bias due to differ-
ences in tumor growth rates, these drugs were tested in 
conjunction with an additional vehicle control arm in each 
PDX, thus providing a tumor growth-independent reference. 
Disease progression was observed across all models treated 

with negative control drugs and statistically indistinguish-
able from concurrent vehicle control (Fisher exact P =  0.6; 
Supplementary Table S6).

Cumulative Kaplan–Meier analysis of animals in the Onco-
Target, OncoTreat, and OncoTreat  +  OncoTarget cohorts 
was performed (Fig.  4A). The analysis demonstrates highly 
statistically significant improvement in disease control using 
agents predicted by either methodology, compared with vehi-
cle control (P <  10−4, two-tailed log-rank test). In contrast, 
there was no statistically significant difference between ani-
mals in the negative control and passage-matched vehicle 
control cohorts (P  =  0.38, log-rank; Fig.  4B). Additionally, 
the treatment-to-control ratio (∆T/∆C%: the ratio of change 
in volumes from baseline in the treatment/control arms), 
which corrects for baseline differences in model-passage 
growth rate, was significantly improved in the OncoTarget 
(mean ∆T/∆C%  =  14.3%; 95% CI,  −1.2 to 29.9, P  =  0.004, 
two-tailed Mann–Whitney U test) and OncoTreat (mean 
∆T/∆C%  =  17.3%; 95% CI,  −0.8 to 35.3, P  =  0.014) treated 
cohorts, compared with the negative control cohort (mean 
∆T/∆C% = 46.1%; 95% CI, 25.5–61.1), with overall statistical 
significance (OncoTarget vs. OncoTreat vs. negative control, 
P = 0.002, two-tailed ANOVA; Fig. 4C).

TCM Inversion by OncoTreat-Predicted Drugs Is 
Conserved In Vivo

Pharmacodynamic (PD) studies are a critical aspect of 
drug development to elucidate drug MoA and to characterize 
primary and acquired drug resistance. PD assessment from 
early, on-treatment samples helps to determine: (a) whether 
effective, OncoTreat-predicted drugs recapitulate in vivo the 
TCM inversion that occurs in the cognate cell line(s) (i.e., 
MoA conservation) and (b) whether the failure of OncoTreat-
predicted drugs corresponds to inability to conserve TCM 
inversion in vivo, perhaps due to pharmacokinetic factors, 
or occurs despite TCM inversion, for instance, due to later 
cell adaptation or clonal selection. The opportunity to inves-
tigate the second point was limited in the study, because 
most OncoTreat-predicted drugs demonstrated strong 
antitumor activity.

Samples for PD assessment were procured from two mice 
per treatment arm, for the four PDX models treated with 
at least three OncoTreat-predicted drugs—GIST-81050, 
BC-32398, CNS-16474, and PAC-05647. Mice were randomly 
selected for early sacrifice, independent of tumor size, 3 hours 

Figure 3.  Treatment response in PDX models. A, Fidelity assessment of the seven PDX models. Enrichment of patient TCMs in differentially active and 
inactive proteins in mature P0-passage PDX tumor samples, assessed by OncoMatch. TCM activity was highly conserved in six out of seven models, but 
not in the BC-50291 breast cancer model, indicating significant early passage drift. B and C, Waterfall plots for end-of-study time point showing the rela-
tive tumor volume change for mice treated for a median of 29 days with OncoTarget-predicted drugs in seven PDX models (B), and OncoTreat-predicted 
drugs in six PDX models (C). Plots are grouped and color coded by model, with vehicle (solid bars) and drug-treated (textured bars) mice within each PDX 
presented side by side. OncoTreat predictions were not made for CAR-23659 due to lack of completion of a drug perturbation screen in a cognate colon 
cancer cell line. D, Summary of response rates at the end-of-study for each drug prediction category (OncoTreat Only and OncoTarget Only) including 
a nonoverlapping category for drugs predicted by both OncoTarget and OncoTreat (Both). A DCR [stable disease + partial response (PR) + complete 
response] of 68% (n = 41/60) and objective response rate (partial + complete response) of 12% (n = 7/60) were observed when treating with OncoTarget-
predicted drugs. Responses from OncoTarget [or both]-predicted drugs were primarily stable disease (n = 48) and PR (n = 12). A DCR of 91% (n = 48/53) 
and ORR of 17% (n = 9/53) were observed when treated with OncoTreat-predicted drugs. OncoTreat [or both]-predicted drugs demonstrated stable 
disease (n = 55) and PR (n = 14). Overall P value (Fisher exact) is reported for DCR and ORR, assessing for a between-group difference in response rates 
across all drug prediction groups. E, Summary statistics of overall and pairwise comparisons of drug prediction groups. Both OncoTarget and OncoTreat 
were highly accurate in predicting disease control (P < 10−3, two-tailed U test) and objective response (OncoTarget P = 0.03; OncoTreat P = 0.01) 
versus vehicle control. Note, valid direct comparisons of OncoTarget and OncoTreat are limited by imbalances in the number of predictions tested in 
different models.
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Figure 4.  Kaplan–Meier and ΔT/ΔC% analysis. A, Kaplan–Meier plot for disease control showing significant differences for the arms treated with 
either OncoTarget-, OncoTreat-, or Both-predicted drugs compared with vehicle control (P < 10−4, log-rank test). B, Kaplan–Meier plot for disease control 
showing no difference between the negative control drugs (not predicted by either OncoTarget or OncoTreat) and matched vehicle control (P = 0.38). 
C, Boxplots showing the distribution of the treatment-to-control ratio (ΔT/ΔC%: relative change in volumes from baseline in the treatment/control) seen 
in animals treated with negative controls, OncoTarget-predicted, and OncoTreat-predicted drugs, normalized to matched-vehicle control. There is a sta-
tistically significant difference in mean ΔT/ΔC% in OncoTarget-treated (P = 0.004, Mann–Whitney) and OncoTreat-treated (P = 0.01) mice versus negative 
controls (overall, P = 0.002, 2-tail ANOVA).
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following the third dose, and were excluded from response 
assessment. The four selected models had the highest patient 
tumor fidelity (P < 10−10; Fig. 3A) and were thus well-suited 
to evaluate MoA conservation. TCM inversion was assessed 
by VIPER analysis of RNA-seq signatures comparing drug-
treated versus vehicle control–treated PDX tumor samples.

Overall, the vast majority of OncoTreat-predicted drugs 
with available PD samples—i.e., 15 of 18 (83%)—significantly 

recapitulated in vivo (P < 10−5, by one-tailed aREA) the TCM 
inversion predicted from cognate cell line perturbational 
assays, in vitro, with P-values ranging from 10−5 (tenipo-
side in PAC-05647) to 10−40 (daunorubicin in BC-32398; 
Fig.  5A–D). The three drugs that failed to conserve MoA 
in vivo included abiraterone in CNS-16474, which was bor-
derline for achieving disease control, belinostat in PAC-
05647, which achieved disease control by end-of-study, and 
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daunorubicin in GIST-81050, which also achieved disease 
control (Supplementary Table  S6). As belinostat was the 
only HDAC inhibitor evaluated for PD effect, one is tempted 
to speculate if the early time point was inadequate for 
an epigenetic modifying drug to fully implement its in 
vivo effect. Intriguingly, daunorubicin demonstrated strong 
TCM inversion in the BC-32398 model but not GIST-81050, 

where it inverted the 25↓  MRs but failed to invert the 
25↑  MRs, and yet had strong antitumor activity in both 
models. Conversely, one drug failed to achieve disease con-
trol (homoharringtonine in the CNS-16474 model) despite 
recapitulating TCM inversion in vivo.

As expected, four of the negative control drugs—alpelisib, 
selinexor, serdemetan, and pacritinib—failed to achieve 
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Figure 5.  Pharmacodynamic assessment of TCM inversion in vivo, in early on-treatment biopsy samples. In the four PDX models where we tested 
three or more OncoTreat-predicted drugs, two mice from each drug arm were sacrificed after the third dose. VIPER was used to generate a differential 
protein activity signature for each drug-treated versus vehicle control–treated arm in the respective PDX model. Enrichment of activated and inactivated 
patient tumor master regulators in this signature was assessed by aREA. A–D, Statistically significant TCM inversion in vivo (Bonferroni P < 10−5), which 
recapitulated the predictions from cognate cell lines in vitro, was confirmed for 15 of the 18 OncoTreat-predicted drugs for which PD samples were avail-
able. Exceptions denoted by red boxes included daunorubicin in GIST-81050, which however achieved disease control, abiraterone in CNS-16474, which 
induced only modest tumor growth inhibition, and belinostat, an epigenetic modulator, in PAC.05674, which achieved disease control. E, As expected, four 
of five negative control drugs tested in GIST-81050, did not significantly invert TCM activity. TAE684, however, did induce significant TCM inversion at 
this early time point. All five drugs failed to induce disease control in this model.
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significant TCM inversion in vivo (Fig. 5E) and did not achieve 
disease control by end of study. TAE684 did induce TCM 
inversion in vivo (P = 10−16) in the early on-treatment sample, 
yet still failed to achieve disease control.

In summary, 15 of 18 OncoTreat-predicted drugs, includ-
ing 13 of 16 (81%) that induced disease control, recapitulated 
significant TCM inversion in early on-treatment PD samples. 
This is consistent with our hypothesis that inference of drug-
induced TCM inversion in carefully selected models, whether 
they be cell lines or PDXs, is robust and a feature of the hyper-
connected and autoregulated nature of TCMs.

Case Report of N-of-1 Clinical Application
The proposed PCM framework discussed in this study is 

uniquely suited to identify therapeutic alternatives in real-
world scenarios, even for rare cancers lacking actionable 
mutations and standard-of-care options. Calcifying Nested 
Stromal Epithelial Tumor (CNSET) is an exceptionally 
uncommon primary hepatic tumor that occurs in children 
and young adults, with only about 40 cases reported in the 
literature (32). Although localized disease is often effectively 
cured with surgery, recurrent and de novo metastatic dis-
ease demonstrates chemotherapy resistance, and there are 
no proven therapeutic options (33–36). We thus report the 
observed clinical outcome for a CNSET case, where Onco-
Target was used off-trial to help guide treatment selection 
when all other options were exhausted.

A 14-year-old male reported a 1-month history of abdomi-
nal pain and fatigue. A computed tomography (CT) scan of 
the chest and abdomen revealed a large hepatic mass with 
multiple satellite liver tumors and pulmonary metastases. 
The mass was biopsied, and histopathologic evaluation was 
consistent with CNSET. The family was initially hesitant to 
initiate chemotherapy, but the patient developed progressive 
hepatomegaly, anorexia, weight loss, constipation, and ane-
mia in the subsequent 3 months. Memorial Sloan Kettering 
IMPACT (37), a targeted next-generation sequencing panel 
covering 468 genes, was performed on a biopsy specimen and 
demonstrated a CTNNB1 hotspot mutation, TERT promoter 
gain-of-function mutation, and an NTRK3 point mutation 
not known to predict response to currently available TRK 
inhibitors. The estimated tumor mutational burden was only 
2.6 per megabase, predicting a low likelihood of response to 
immune-checkpoint inhibitors.

Based on the observation that the tumor shared biologi-
cal features with Wilms’ tumor (CTNNB1 and TERT muta-
tions, WT1 and β-catenin expression by IHC), the patient 
was treated with 10 neoadjuvant cycles of a “Wilms’ tumor 
like-regimen,” including five cycles of vincristine/irinotecan, 
four cycles of vincristine/dactinomycin/doxorubicin, and one 
cycle of cyclophosphamide/topotecan (38, 39). There was 
a PR to chemotherapy and the patient successfully under-
went debulking surgery. Postoperative chemotherapy was 
complicated by the development of severe colitis, and the 
family elected to discontinue systemic therapy. Over the next 
6 months, there was evidence of significant disease progres-
sion in the liver and lungs (Fig.  6A), and the patient devel-
oped biliary obstruction and transaminitis that made him 
ineligible for clinical trials and precluded the use of most 
chemotherapy agents.

Given the lack of remaining viable therapeutic options, 
tumor tissue was sent for the CLIA-compliant OncoTarget 
test. The most significantly activated targetable protein was 
PDGFRB (Bonferroni P = 10−7, Fig. 6B). After discussing the 
results with the family, including the absence of clinical data 
on targeting PDGFRB in this exceedingly rare malignancy, 
we decided sunitinib would be the best candidate drug, 
given its relative selectivity for PDGFRB over other kinases 
(RRID:SCR_003823), accessibility as a drug approved by the 
FDA in 2006, and safety data in the context of impaired 
hepatic function and pediatric patients. The patient had a 
PR to the first cycle of sunitinib (6 weeks) which deepened 
by the end of cycle 3 (Fig. 6C). Remarkably, this patient who 
had rapidly progressing treatment-refractory cancer has had 
a durable response and remains on sunitinib, now for 2 years 
from his original presentation with only mild side effects 
such as fatigue. Although OncoTarget did predict response, 
a caveat is that we cannot be certain of the mechanism. As 
pediatric patients do not routinely undergo repeat biopsies 
when responding to a therapy, we could not confirm the 
treatment effect on PDGFRB activity or changes in the activ-
ity of other canonical targets of sunitinib, including KIT and 
less potently VEGFRs.

Pharmacotype Identification for Clinical 
Trial Design

The OncoTarget and OncoTreat approaches can identify 
multiple candidate drugs for the treatment of most tumors, 
a majority of which induced disease control in PDX models. 
Given the inherent conservation of MR and TCM activity 
within cancer subtypes, as identified by protein activity-
based cluster analysis (7), it is reasonable to expect that 
subsets of patients with predicted sensitivity to the same 
drugs (pharmacotypes) should emerge from these analyses. 
Indeed, the majority of TCGA cancer cohorts were effec-
tively stratified into 2 to 7 pharmacotype clusters by joint 
OncoTreat/OncoTarget analysis.

Figure 7A provides a representative example for the BLBC 
subtype of breast cancer in TCGA, with the pharmacotype 
cluster assignment of the three BLBC patients shown. Con-
sistently, tumors are predicted to respond to distinct, phar-
macotype-specific drugs. Full pharmacotype stratification of 
patient cohorts representing the cancers discussed in this 
study is provided in Supplementary Fig. S6A–S6D.

DISCUSSION
The oncogene addiction (3) and immunotherapy (4) para-

digms have illuminated PCM’s potential to meaningfully 
improve the outcomes of some patients. These approaches are 
straightforward to implement in the clinic. However, method-
ologies to predict response to the full repertoire of available 
antineoplastics, based on rapid and inexpensive RNA-seq 
profiling, are currently underdeveloped and would represent 
a welcome addition. Here, we present a first-in-class applica-
tion of two complementary and scalable transcriptome-based 
tests, OncoTarget and OncoTreat, to predict drug sensitivity 
on an individual patient basis. Critically, both methodologies 
are New York and California Department of Health approved 
and CLIA compliant, and predictions can be generated within 
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2 to 3 weeks after biopsy, including for OncoTreat if perturba-
tional profiles in a cognate cell line are available.

We encountered a number of practical challenges dur-
ing this large-scale effort that are worth noting. First, as 
discussed, both OncoTarget and OncoTreat depend on the 
VIPER-based measurement of protein activities. We have 
published extensively on the accuracy and reproducibility 
of VIPER (8, 16), which compares favorably with gene and 
protein abundance estimation. However, as, unlike binary 
determination of genetic alterations, VIPER produces a fully 
quantitative assessment subject to inherent biological and 
technical noise, we decided to use a highly conservative sta-
tistical significance threshold for predicting drug sensitivity 
(Bonferroni P  ≤  10−5). As a result, our analyses may likely 
miss drugs that could have been beneficial (false negatives). In 
addition, protein activity measurement by VIPER, as reported 
(16), may be incorrect for 10% to 20% of proteins, leading to 
both false-positive and false-negative drug predictions.

Second, there are several recognized limitations to the use 
of PDX models. Tumors undergo clonal evolution under 
various selection pressures, including available nutrients, 
organ-specific environment, immune editing, pharmacologic 

treatment, and growth kinetics (40). The selection pressures 
in an immunocompromised PDX may differ from those of 
the original human host, thus resulting in rapid drift. To 
minimize this challenge, we restricted therapeutic studies to 
early passages and confirmed model fidelity on the basis of 
preserved TCM activity. Due to cost and constraints in propa-
gating and expanding models at a single early passage, we 
could not test all statistically significant drugs predicted by 
OncoTarget and OncoTreat and had to implement practical 
selection criteria. We also could not test a more comprehen-
sive list of negative control drugs, such as drugs the patient 
had previously or was currently receiving, or a broader panel 
of randomly selected drugs, blinded to the OncoTarget and 
OncoTreat results, across all models. Furthermore, the role of 
the immune system and thus the effect of immunotherapy is 
not evaluable in these immunodeficient models.

Additionally, the development of a xenograft from 
implanted patient tumor tissue may be influenced by sundry 
factors—including histology, mitotic rate, and fraction of 
cancer stem cells (41)—whereas the timeline between implan-
tation and completion of drug testing can vary greatly (e.g., 
3 to 18 months in our experience), with some tumor types 
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Figure 6.  Response to sunitinib in a pediatric patient with CNSET with aberrant activation of PDGFRB, as assessed by OncoTarget analysis. A, Chest 
CT scan pre-sunitinib treatment: coronal section (left) and axial sections (middle and right) demonstrate numerous pulmonary metastases (red arrows) 
ranging from less than 1 to close to 3 cm in size. Several of the tumors were new or growing on serial scans during the preceding 6 months. B, OncoTarget 
predictions on patient tumor. Multiple proteins were noted to be significantly activated (Bonferroni P < 10−5), but PDGFRB activation was both the top 
prediction and also judged to be most actionable by the clinical team. C, Chest CT following three cycles of sunitinib (6 weeks each). Corresponding sec-
tions demonstrate that several of the tumors had decreased in size (red arrows) or were no longer radiologically evident.
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rarely taking in the xenograft. Consistent with the experience 
of other groups, less than half of attempted PDXs could be 
established (Supplementary Table S1), and there was obvious 
tumor-type bias (42–48). Although we would not anticipate 
these factors to bias comparisons of response between Onco-
Target/OncoTreat-predicted and negative control antineo-
plastic drugs, it nonetheless limits our ability to confirm the 
utility of our methodologies in certain tumor types. After 
a planned interim statistical analysis demonstrated highly 
significant findings, and given budgetary constraints, we 
tested drugs in only a fraction (the first seven) of established 

PDXs. Nonetheless, we believe that our systematic study of 35 
algorithmically predicted drug arms and 13 negative control 
drug arms represents the largest such effort to date aimed at 
validating computational drug-sensitivity predictions in vivo.

We further note that there is no consensus on the opti-
mal PDX endpoint that best predicts response in patients. 
Although clinical response assessments using RECIST are 
based on unidimensional measurements, bidirectional cal-
iper measurements to estimate tumor volume are stand-
ard practice in mouse studies, but are prone to significant 
interobserver variability (49, 50). RECIST-defined criteria for 
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Figure 7.  Pharmacotype-based umbrella trial concept. A, Heat map showing top OncoTreat predictions [−log10(P)] for 173 BLBC samples from TCGA, 
as well as for the three BLBC samples from patients enrolled in the study (BC-50291, BC-32398, and BC-97359). Following unsupervised partition-
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drug, respectively. Importantly, at least a few predictions are generated for the majority of tumors, using existing drug perturbation data in PanACEA 
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progressive disease (PD; i.e., >20% increase in the sum of 5 
target lesions) translate to a 73% increase in spherical volume 
(51). When considering the various factors that can contrib-
ute to variability in tumor measurements, our definition of 
PD (100% tumor volume increase relative to baseline) remains 
within reasonable margins of error (±  1–2 mm) and aligns 
with volumetric definitions of progression (51–53). Hence, we 
believe there are advantages to the volumetric end points we 
present here, and, reassuringly, OncoTarget and OncoTreat 
demonstrated significant benefit using several complemen-
tary analytic metrics.

Third, OncoTarget and OncoTreat predictions are unique 
and vary in number between tumors. In some cases, there are 
very few predictions by one or both methods and predictions 
may not be necessarily conserved in the PDX model, whereas 
in other cases there are abundant predictions. As such, it is 
not always possible to test an identical number of predictions 
of each type across models. This motivated the design of our 
study to evaluate the efficacy of drugs predicted by the two 
methods in parallel, and thus we cannot draw any robust 
conclusions about differences without additional studies. 
Further, although selecting a conservative statistical thresh-
old generally reduces the number of predicted drugs to a 
reasonable number (e.g., 5 to 25), the significant variability 
between tumors is an important consideration for future 
clinical deployment.

Finally, a requisite component of generating OncoTreat 
predictions is the completion of one or more perturba-
tion screens in a cognate model (e.g., cell line or organoid). 
Although we do not anticipate postperturbation cell viability 
assessments in such models to meaningfully predict clini-
cal response, we do intuitively note that a critical aspect of 
assessing the ability of a drug to induce patient-specific TCM 
inversion is that TCM inversion cannot be assessed in the 
cell line model if the corresponding MRs are not consistently 
differentially active. Thus, identifying high-fidelity models 
with conserved TCM activity was a critical element of the 
study. In addition to their dependence on model availability, 
it should be noted that the generation of comprehensive, 
high-throughput perturbation screens is also cost and time 
prohibitive. As a result, perturbation screens had not yet 
been completed for all the tumors considered in this study. 
This is also a real-world consideration, as evidenced for the 
CNSET case study, where we could only rely on OncoTarget 
predictions. Fortunately, since completion of this study, we 
have generated a Pan-cancer Activity by Enrichment Analysis 
database (PanACEA), comprising perturbational profiles of 
about 350 drugs in 25 cancer cell lines, each representing a 
cognate model matched to an MR-based subtype within 15 
human malignancies (Supplementary Table  S7). Access to 
this extensive resource, which greatly extends the generaliz-
ability of the proposed approach, will be made available via a 
companion publication; see also ref. 54.

We also make note of several practical advantages of our 
methodology. First, these algorithms are tumor- and muta-
tion-agnostic, thus supporting their application to the vast 
majority of human malignancies. Based on benchmarking of 
11,289 primary tumors from TCGA, as well as more than 100 
prospectively collected samples from patients with metastatic 
and treatment-refractory cancers, these tests can efficiently 

prioritize multiple candidate drugs for virtually every tumor, 
thus allowing further drug prioritization based on drug 
approval status, insurance reimbursement, oncologist expe-
rience, prior treatment, and toxicity. We further note that, 
whereas our current study was restricted to solid tumors, 
the approach is equally applicable to hematologic malignan-
cies. Indeed, we have previously reported on several MR-
based insights in lymphoma and leukemia (15, 55), including 
OncoTreat-based prediction of drug synergy (27), and these 
malignancies will constitute a focus of future studies.

Critically, as the number of validated OncoTreat and Onco-
Target predictions increases, including in a clinical setting (56), 
the need to validate additional predictions in flawed preclini-
cal models will decrease, conceivably leading to direct clinical 
utilization. This would significantly increase clinical utility, 
especially in the advanced metastatic setting. Indeed, we have 
already initiated and enrolled subjects to therapeutic trials 
based on our methodologies, including ricolinostat  +  nab-
paclitaxel in metastatic breast cancer (NCT02632071; ref. 56), 
entinostat in neuroendocrine tumors (NCT03211988; ref. 13), 
and the HIPPOCRATES umbrella trial in pancreatic cancer 
(NCT04476537), without the need for PDX testing.

Second, the ability to stratify patients into a small num-
ber of well-defined pharmacotypes—i.e., tumors with shared 
predicted drug sensitivity—in virtually all analyzed cancer 
cohorts, supports prioritization and evaluation of drug pre-
dictions through standard clinical trial mechanisms. Phar-
macotype analysis provides two critical insights: (i) It helps 
identify drugs consistently predicted across a substantial 
fraction of patients in a specific tumor type (e.g., BLBC), thus 
supporting mechanism-based hypotheses for preclinical and 
clinical trials, and (ii) it helps disregard singleton drugs—i.e., 
drugs predicted for a single patient in a cohort—as poten-
tial false positives. Basket and umbrella trials may incorpo-
rate OncoTarget and OncoTreat as companion diagnostic 
biomarkers. Lending support to this approach, an Onco-
Target-based trial testing the HDAC6 inhibitor ricolinostat 
in metastatic breast cancer recently concluded with virtually 
complete validation of sensitivity predictions [area under the 
curve (AUC) = 1; ref. 56], thus paving the road to additional 
trials with a similar design. OncoTarget, in particular, could 
expand the pool of eligible patients for basket trials using tar-
geted agents, whereas OncoTreat can be used as the basis of 
umbrella trials where patients with one or more cancer types 
can be assigned to preselected drug treatment arms based on 
pharmacotype classification. To illustrate this concept, we 
show the pharmacotypes identified by our analysis in BLBC 
and how this could be leveraged to design an umbrella trial 
(Fig. 7A and B).

Third, the resources required to perform OncoTarget and 
OncoTreat analysis (i.e., RNA-seq and modest computational 
resources) are relatively affordable and scalable. There is a 
critical unmet need to diversify enrollment to clinical trials, 
which further affects rapid adoption of new technologies in 
different healthcare settings (56). The ability to perform the 
analysis from archival formalin-fixed, paraffin-embedded tis-
sue will allow access to clinical trial participation and clinical 
testing across a broad range of health care facilities. As our 
methodology identifies candidate drugs for the vast majority 
of patient tumors, we hope that it will remove at least one 
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roadblock and source of disappointment to patients enroll-
ing in basket/umbrella trials, due to some not matching any 
drug arm.

Finally, our methodology can capture longitudinal changes, 
such as we have shown for metastatic progression in breast 
cancer and neuroendocrine tumors (13, 57), histologic trans-
formation in follicular lymphoma (15), therapy resistance in 
T-cell acute lymphoblastic leukemia and breast cancer (55, 
58), and reprogramming of castrate-resistant prostate adeno-
carcinoma to a neuroendocrine state (59). OncoTarget and 
OncoTreat could thus be potentially applied longitudinally 
to adapt therapy to the dynamic nature of tumor evolution.

There are also potential limitations. Tumor heterogeneity 
and stroma infiltration are only partially addressed by the 
current approach—specifically by limiting the analysis to 
high tumor cellularity samples, a criterion usually met by the 
mostly metastatic samples collected in our study. This issue 
will be mitigated in the future by the increasing availability 
of single-cell gene-expression profiling technologies. Indeed, 
due to the robustness of VIPER to low sequencing depth, we 
have recently shown its applicability to measure protein activ-
ity in single cells, comparing favorably with antibody-based 
measurements and recapitulating bulk measurements (17, 
60), thus supporting drug predictions for specific tumor sub-
populations (bioRxiv 2022.02.28.482410), including immuno-
suppressive, nontransformed populations, such as regulatory 
T cells (bioRxiv 2022.02.22.481404).

We conclude by stating the obvious. It would be naive to 
expect that all, or even a majority of, predicted drugs will 
be clinically effective in humans. Yet, our study and some 
initial clinical confirmations (56) suggest that these tests 
may represent a novel PCM option for mechanism-based 
prioritization of existing, clinically relevant drugs that is not 
currently available to cancer patients, and thus potentially 
complement successful approaches such as targeted therapy 
and immunotherapy.

METHODS
Generation of Gene Regulatory Networks

To support context-specific regulatory protein activity inference 
by VIPER, we have generated comprehensive molecular interaction 
networks (interactomes) using the Algorithm for the Reconstruction 
of Accurate Cellular Networks (ARACNe; refs. 61, 62), although other 
suitable algorithms may be used. The networks were reverse-engi-
neered by ARACNe from ≥100 RNA-seq profiles of human cancer 
tissue from (a) TCGA and (b) for meningioma and neuroendocrine 
tumors, from Columbia University collected datasets (Supplemen-
tary Table  S8). TCGA RNA-seq level 3 data were downloaded from 
NCI Genomics Data Commons (63). Raw counts were normalized 
and variance stabilized by fitting the dispersion to a negative-bino-
mial distribution as implemented in the DESeq2 R-package (RRID: 
SCR_000154; refs. 64).

ARACNe was run with 100 bootstrap iterations using an input 
set of candidate regulators, including (a) 1,877 transcription fac-
tors annotated in the Gene Ontology (GO; ref.  65) “Molecular 
Function database” as DNA-binding transcription factor activity 
(GO:0003700), DNA binding (GO:0003677), transcription regulator 
activity (GO:0030528), or regulation of transcription, DNA-templated 
(GO:0003677 and GO:0045449); (b) 677 transcriptional cofactors 
manually curated from genes annotated as transcription coregula-
tor activity (GO:0003712), plays a role in regulating transcription 

(GO:0030528), or regulation of transcription (GO:0045449); and 
(c) 3,895 genes encoding for signal transduction proteins, dually 
annotated in the GO “Biological Process database” as Signal Trans-
duction (GO:0007165) and in the GO “Cellular Component data-
base” as either intracellular (GO:0005622) or plasma membrane 
(GO:0005886). The data processing inequality parameter of ARACNe 
was set to 0 and the mutual information (MI) threshold was set to 
P =  10−8. The mode of regulation was computed based on the cor-
relation between regulator and target gene expression as previously 
described (16). The version of raw counts and generated networks 
used in our work are provided (see Key Resources Table in the 
supplementary material).

VIPER Analysis
We have previously extensively validated the VIPER analysis algo-

rithm as a highly robust and specific tool for the accurate inference 
of regulatory protein activity in a tissue context-dependent manner 
(8, 15, 16). VIPER leverages accurate tissue-specific gene regulatory 
networks, such as those produced by ARACNe (61, 62), to measure dif-
ferential protein activity from bulk or single-cell gene-expression sig-
natures (see Key Resources Table). Specifically, akin to a multiplexed 
gene-reporter assay, VIPER measures a protein’s differential transcrip-
tional activity through a probabilistic enrichment framework that 
assesses the enrichment of its activated and repressed transcriptional 
targets (regulon) in genes over- and under-expressed in a sample of 
interest compared with a set of control samples (reference model).

We considered multiple options for reference models to apply 
VIPER to tumor samples for the purposes of predicting drug response. 
Although organ-matched normal tissue expression profiles, such as 
those available from the genotype-tissue expression (GTEx) resource 
(66), and cohort-matched tumor and tumor-adjacent profiles were 
considered, such references would potentially overemphasize pro-
liferative and cell-cycle signals and underemphasize lineage-specific 
tumor vulnerabilities, respectively. Ultimately, we prospectively opted 
to use the pan-TCGA tumor dataset as our reference model to run 
VIPER and the downstream drug prediction algorithms.

Thus, for each cancer sample, we generate a differential gene-
expression signature (DGES)—computed as the gene-wise relative 
expression to the distribution of the expression of that gene across 
11,289 TCGA samples—and expressed as its quantile relative to the 
reference model. Genes whose expression is not captured (quanti-
fied) in TCGA are excluded from the DGES. Next, VIPER computes 
enrichment scores for the targets of each regulatory protein in the 
DGES, using the aREA test (16), thus determining if the protein’s 
transcriptional footprint is over-, under-, or normally represented 
in the tumor’s DGES. Each enrichment score is computed by a 
two-tailed approach, rank-transforming the DGES for the positively 
regulated target genes and then inverting the signature to compute 
enrichment of the repressed target genes. The enrichment score is 
a weighted average based on targets’ ranks in the signature and the 
protein-target gene MI assignments in the network, with stronger 
interactions contributing more to the score. Subsequently, statisti-
cal significance for the enrichment score is computed by an analytic 
approach. Under the null hypothesis, the enrichment score is nor-
mally distributed with a mean of zero and variance proportional to 
1/(n −  1), where n is the number of targets, scaled to the standard 
variable. This approximates shuffling the genes in the signature at 
random (67), outputting a NES. Although aREA does not directly 
account for biological correlation between the expression of various 
genes (i.e., covariance) in the given biological context, a very con-
servative NES/P-value threshold is empirically used for downstream 
analyses. Importantly, due to VIPER’s use of robust reporter sets 
to compute the activity of each protein, moderate biases in RNA 
profiles based on RNA extraction method, sequencing instrument, 
and reference transcriptome version used to map reads, all of which 
can affect genes captured and abundance estimates, generally have 
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minimal effect on protein activity assessment. Likewise, due to this 
use of robust reporter sets, for rare cancer types not represented in 
TCGA, which might have lineage-specific aberrant expression of a 
subset of genes, we overall do not anticipate a significant impact on 
protein activity assessment. When cancer type–specific networks are 
not available, we use an integrated network approach as implemented 
in metaVIPER (60, 68).

The most differentially active proteins identified by VIPER com-
prise candidate MR proteins. Critically, we have shown that MR 
proteins are ultra-conserved within each of the 112 tumor subtypes 
and play a key role in integrating the effect of genomic alterations to 
implement a stable tumor cell state, as shown for 20 tumor types in 
TCGA (7). VIPER reproducibility is extremely high, such that Spear-
man correlation of activity profiles generated from RNA-seq at 30M 
to as low as 50K read depth is ρ ≥ 0.8 (16) even though correlation 
of the underlying gene-expression profiles is low ρ ≤  0.3. Although 
VIPER is uniquely suited for assessing regulatory proteins that 
directly control gene expression, including transcription factors, 
cofactors, and chromatin remodeling enzymes, we have shown that 
the algorithm is equally effective in monitoring the activity of signal-
ing proteins (16) and cell-surface markers (60).

OncoTarget Analysis
Through the use of (a) DrugBank (69), (b) the SelleckChem data-

base (RRID:SCR_003823), (c) published literature, and (d) publicly 
available information on pharmaceutical company drug develop-
ment pipelines, we have curated a refined list of 180 actionable pro-
teins representing validated targets of high-affinity pharmacologic 
inhibitors, either FDA approved or in clinical trials (Supplementary 
Table S4). This manually curated target-drug database is dominated 
by signaling proteins and established oncoproteins, as expected 
from the bias in druggability assessment and past focus in drug 
development efforts. Pharmacologic agents with narrow therapeutic 
indices—such as those targeting neurotransmitters, ion channels, and 
vasoactive drugs—were purposefully removed from the database as 
less likely to be successfully repurposed in oncology.

OncoTarget simply analyzes the VIPER outputted protein activ-
ity measurements for these 180 actionable proteins and provides a 
multiple-testing corrected significance value for the corresponding 
NES. We used a conservative threshold (Bonferroni P < 10−5) to iden-
tify candidate proteins eliciting essentiality when targeted by a phar-
macologic inhibitor, for in vivo validation. Based on this threshold, 
the average TCGA tumor yields 15 unique, significant OncoTarget 
predictions, ranging from an average of n  =  4.5 in adrenocortical 
carcinoma (ACC) to n =  28.7 in renal clear cell carcinoma (KIRC). 
Tumors representing conserved subtypes tend to have conserved 
OncoTarget predictions, leading to the identification of subsets of 
patients whose cancer is predicted to respond to the same set of 
drugs (pharmacotypes; see Fig. 7; Supplementary Fig. S6A–S6D for 
the tumor types discussed herein).

OncoTreat Analysis
We have previously described OncoTreat (13) as a methodol-

ogy to systematically elucidate compounds capable of significantly 
inverting the activity of the 25↑+25↓ MRs comprising the TCM that 
regulates metastatic progression in enteropancreatic and rectal neu-
roendocrine tumors. In that study, OncoTreat identified entinostat, 
a class I histone deacetylase inhibitor, among 105 profiled drugs, as a 
highly effective TCM-inverter drug (13), leading to a clinical trial that 
is currently accruing patients (NCT03211988).

For the current study, we more broadly adapted OncoTreat to 
identify TCM-inverter compounds, by comparing individual tumor 
samples to the entire TCGA repository, as a reference model, as 
described above. Specifically, for each tumor type considered in the 
study, the analysis proceeds through the following steps:

1. Identifying cell lines (typically 1 or 2) jointly representing 
high-fidelity (i.e., cognate) in vitro models for a majority of 
samples in the corresponding TCGA cohort (e.g., pancreatic 
ductal adenocarcinoma, PAAD), based on TCM-recapitulation 
(Bonferroni P < 10−5), as assessed by enrichment analysis; see 
next section on OncoMatch. Upon acquisition of cell lines 
(see Key Resources Table), RNA-seq profiles of untreated cell 
lines were generated at CUIMC to confirm reproducibility of 
expression and MR/TCM profiles. All cells were inspected for 
Mycoplasma contamination using the ABM PCR Mycoplasma 
Detection Kit.

2. Generating RNA-seq profiles of each cognate cell line, from 
Step 1, at 24 hours following perturbation with a library of 
clinically relevant oncology drugs. Drugs were titrated at their 
maximum sublethal concentration (i.e., 48 hours EC20), as 
determined by 10-point dose-response profiles. Profiled drugs 
included FDA-approved and late-stage experimental oncology 
drugs (in phase II and III clinical trials; see Supplementary 
Table S5). For completed screens, we have attempted to be all 
inclusive, excluding therapeutic antibodies due to a lack of 
availability and immunotherapy agents due to lack of appropri-
ateness to screen in vitro. Additional miscellaneous compounds 
with EC50 ≤ 2 μmol/L in the selected cell line were also included. 
Most compounds were purchased from SelleckChem or Tocris. 
DMSO was selected as a universal in vitro solvent (vehicle). Mul-
tiplexed, low-depth (1M to 2M reads) RNA-seq profiles were 
generated using 96-well plates via the PLATE-seq technology, 
using fully automated microfluidics for increased throughput 
and reproducibility (29). Eight DMSO-treated controls were 
included in each plate, to avoid plate-dependent batch effects 
and to mitigate the inherent variability of DMSO treatment.

3. Generating a subproteome-wide context-specific drug MoA for 
each drug, as represented by the differential activity of each 
protein in drug-treated versus vehicle control (DMSO)–treated 
cells. Differential protein activity was assessed by VIPER analy-
sis using a tissue-matched gene regulatory network produced by 
ARACNe; see above.

4. Identifying sample-specific candidate MRs and the TCMs they 
comprise, by VIPER analysis of the sample’s DGES, compared 
with the set of TCGA samples (reference model).

5. Finally, prioritizing pharmacologic agents based on the sta-
tistical significance of the enrichment of the tumor sample’s 
TCM-activity signature (i.e., 25↑+25↓ MRs) in proteins inacti-
vated and activated in drug versus DMSO-treated cells, respec-
tively, with negative NES indicating TCM inversion (Bonferroni 
P  <  10−5, one-tailed aREA). The number of candidate MR 
proteins (n = 50) used to assess TCM inversion, which for this 
step was restricted to only transcription factors and cofactors, 
was selected because we have shown that, on average, across all 
of TCGA, the vast majority of functionally relevant genomic 
events can be found upstream of the top 50 VIPER-inferred 
candidate MR proteins (7).

OncoMatch, Cell Line, and PDX Model Fidelity Analysis
Model fidelity was assessed based on the statistical significance 

of the TCM-activity conservation between a human-derived sample 
and a model-derived sample. For computing protein activity in 
cell line models, we first generated an analogous DGES comparing 
each cell line against a large repository of cancer cell lines (refer-
ence model), which includes both the CCLE (23) and the gCSI (24). 
Next, we computed the enrichment of the TCM-activity signature 
(25 most active and 25 most inactive patient tumor-specific MRs) in 
differentially active and inactive proteins in the model (OncoMatch). 
The aREA (16) test was again used, but any suitable enrichment 
analysis algorithm could be substituted. The analysis was used to (a) 
select optimal cell lines for the generation of perturbational profiles 
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that effectively track the activity of tested drugs on TCM proteins 
and (b) assess the fidelity of PDXs prior to validation of drugs pre-
dicted from the human sample. All cell lines used in these analyses 
were resequenced on-site to capture any potential drift effects. A 
conservative threshold (Bonferroni P <  10−10) was used to identify 
high-fidelity models.

Establishment of PDX Models and Therapeutic 
Drug Testing

All animals were maintained under barrier conditions and all 
experiments were performed in accordance with and approval of the 
Memorial Sloan Kettering Cancer Center (MSKCC) Institutional 
Animal Care and Use Committee (IACUC; protocol #16-08-011) 
and CUIMC IACUC (AAAF5850). Patient tumor tissue was collected 
under the CUIMC Institutional Review Board (IRB)–approved pro-
tocol AAAA7562, with written informed consent provided prospec-
tively by the subject and conducted in accordance with recognized 
ethical guidelines under the U.S. Common Rule. Generation of PDX 
models was performed under the MSKCC IRB-approved protocol 
#17-387 and CUIMC IRB protocol AAAJ5811. PDX models were 
established as previously described (52). In summary, fresh tumor 
tissue was fragmented and implanted subcutaneously into non-
obese/severe combined immunodeficiency IL2Rγ null, hypoxanthine 
phosphoribosyltransferase (HPRT)-null (NSGH) mice (Jackson Labs, 
IMSR catalog no. JAX:012480, RRID: IMSR_JAX:012480; see Key 
Resources Table) and tumor engraftment monitored by visual and 
manual inspection.

Engrafted tumors were measured twice weekly with calipers, and 
drug treatment was initiated when tumor volume (TV) reached ∼100 
mm3 (TV = width2 × ½ length; see Key Resources Table for sourcing 
of drugs). Early-passage animals (passages 1–5) were used for all 
therapeutic studies. Aligned with clinical response criteria, treat-
ment response was categorized as CR (>95% volumetric reduction 
from baseline or no palpable tumor), PR (>50% reduction), SD 
(<50% reduction and no more than 100% increase), or PD (>100% 
increase from baseline). DCR is defined as the sum of CR, PR, and 
SD responses divided by the total responses assessed. ORR is defined 
as the sum of CR and PR responses divided by the total responses 
assessed. Tumor responses were assessed at the end of the therapeutic 
study period. Comparisons of disease control and objective response 
rates across treatment groups (OncoTarget alone, OncoTreat alone, 
Both) were performed using a Fisher exact test. The Mann–Whitney–
Wilcoxon method was used to compare differences in the distribu-
tion of relative TV between OncoTarget or OncoTreat cohorts and 
vehicle control. Vardi’s test was used to evaluate differences in AUC 
between treatment groups across models (70, 71). Curves for disease 
control using the Kaplan–Meier estimator were compared and ana-
lyzed using the log-rank test. ΔT/ΔC%, computed as the change in TV 
from baseline for drug-treated mice divided by the change in TV from 
baseline for vehicle control–treated mice, was determined for Onco-
Target, OncoTreat, and negative control cohorts, and differences 
were evaluated using two-way ANOVA. All relevant statistical analy-
ses were performed using R software (v3.5.0) or GraphPad Prism 
[v8.4.1 (RRID:SCR_002798)]. Statistical significance was defined as 
a P < 0.05.

Pharmacodynamic Assessments of TCM inversion
Samples for pharmacodynamic assessment were procured from 

two mice per treatment arm, for the four PDX models treated with 
at least three OncoTreat-predicted drugs—GIST-81050, BC-32398, 
CNS-16474, and PAC-05647. Mice were randomly selected for early 
sacrifice, independent of tumor size, 3 hours following the third 
dose, and were excluded from response assessment. We performed 
RNA-seq and subsequent VIPER on paired drug-treated versus 
vehicle control–treated PDX tumor samples. TCM inversion was 

assessed based on the statistical significance of the enrichment of 
the TCM-activity signature (i.e., 25↑+25↓ MRs of the patient tumor) 
in proteins inactivated and activated in drug-treated versus vehicle  
control–treated PDX tumors, respectively, again using aREA, although 
alternative enrichment tests may be used. Negative NES indicates 
TCM inversion (Bonferroni P < 10−5).

Data Availability
Original tumor bulk RNA-seq data generated as part of this 

work have been deposited to the Gene Expression Omnibus (GEO: 
GSE212854; Key Resources Table). Relevant high-throughput drug 
perturbation data used for de novo assessment of drug MoA is available 
on Figshare (FS; https://figshare.com/s/d77d19eb326b8a8656b8).  
RNA-seq of a cohort of 102 meningioma tumors sequenced at 
CUIMC and used to generate a meningioma network have been 
deposited to GEO (GSE212377). The version of TCGA processed 
data (RNA-seq counts) used to generate networks and perform other 
analyses presented herein is available on FS (https://figshare.com/s/ 
ad114ea4b274a523bb4a). The ARACNe-generated networks used  
to run VIPER are available on FS (https://figshare.com/s/ 
5d1ffd9f8b2e86e37ed6). The RNA-seq counts and OncoTarget 
results for the CNSET case report are available on FS (https://
figshare.com/s/6327d1857201ce657d47). Additional requests should 
be directed to corresponding author A. Califano.
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