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Emerging efforts in precision oncology are largely predicated on 
the identification of ‘actionable’ oncogene mutations, whose 
pharmacological inhibition elicits oncogene addiction1. Despite 

initial successes and clinical deployment of this concept, several 
limitations have emerged2. First, multiple studies3 have shown that 
most adult malignancies lack actionable mutations or harbor muta-
tions either in non-druggable oncogenes (for example, RAS and 
MYC family proteins) or in genes of poorly characterized thera-
peutic value4. Moreover, while mutation-directed therapy often 
achieves a remarkable initial response, this is almost inevitably fol-
lowed by relapse and emergence of drug resistance5,6. Finally, analy-
sis of hundreds of cell lines and compounds shows that, with some 
exceptions—such as for BRAF, ERBB2, EGFR and ALK1 inhibi-
tors—mutations are poor predictors of drug sensitivity7. This is not 
entirely surprising, as drug sensitivity is a complex (dynamic, mul-
tifactorial, polygenic) phenotype. As such, there is urgent need for 
novel approaches that complement and extend oncogene addiction.

Recent results on the aberrant regulatory logic of cancer-related 
phenotypes have highlighted the existence of master regulator  

proteins, whose coordinated activity within tightly regulated modules 
(tumor checkpoints) is strictly necessary for tumor state initiation and 
maintenance8. Consistently, as shown in leukemia9, lymphoma10,11, glio-
blastoma12, prostate13,14, neuroblastoma15 and breast cancer16, genetic 
or pharmacological inhibition of master regulator proteins leads to 
tumor-checkpoint collapse and loss of tumor viability. Indeed, master 
regulators are highly enriched in essential10 and synthetic-lethal11–13,16 
proteins, thus representing a novel class of non-oncogene dependen-
cies17,18 and pharmacological targets. Their mechanistic role in tumor 
cell state maintenance results from their mechanistic transcriptional 
control of gene expression signatures (GES) representing the tumor 
cell’s transcriptional identity. Master regulator proteins can be effi-
ciently and systematically elucidated using the MARINa (Master 
Regulator Inference algorithm)12,19 and VIPER (Virtual Proteomics 
by Enriched Regulon analysis)20 algorithms—the latter allowing anal-
ysis on an individual sample basis, a prerequisite for precision oncol-
ogy applications. These algorithms were extensively validated11–13,16,21.

Thus, the rationale for this methodology (OncoTreat) is that 
small-molecule compounds capable of inducing tumor-checkpoint 
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collapse—that is, activity inversion of an entire tumor-specific mas-
ter regulator repertoire—will abrogate tumor viability by inhibiting 
multiple essential and synthetic-lethal proteins. Thus, tumor check-
points can be used as patient-specific gene-reporter assays for the 
efficient prioritization of therapeutic options.

To test this idea, we focused on gastroenteropancreatic neu-
roendocrine tumors (GEP-NETs), a rare and poorly character-
ized class of human malignancies originating in the pancreas 
(P-NET)22, small bowel (SI-NET)23 and rectum (RE-NET)24. Once 
these tumors undergo metastatic progression, prognosis is poor 
and therapeutic options remain limited25. Using a cohort of 212 
fresh-frozen GEP-NET patient samples collected at 18 institu-
tions, we prioritized and validated master regulator proteins 
representing mechanistic regulators of GEP-NET metastatic  
progression signatures, across 4 molecularly distinct subtypes. 
This was accomplished by VIPER analysis of genes that were 
differentially expressed between each metastatic sample and its 
lineage-matched primary sample(s)21. This allowed prioritization 
of 107 compounds based on their ability to invert patient-specific 
master regulator protein activity, independent of their effect on 
cell viability in vitro. Validation in tumor xenografts matching the 
master regulator-activity profile of individual patients confirmed 
these predictions, suggesting that this approach may complement 
existing precision oncology strategies.

Results
The goal of this study is to show that compounds capable of invert-
ing the coordinated activity of tumor-checkpoint master regulators 
can effectively destabilize tumor cell state, leading to loss of tumor 
viability in vivo. Conceptually, this approach extends oncogene 
addiction to a broader tumor-checkpoint dependency paradigm. 
Specifically, we propose that tumors are more dependent on the 
concerted activity of the master regulator proteins that regulate 
their transcriptional state stability8 than on the individual oncop-
roteins that initiate it. To systematically elucidate compounds tar-
geting these tumor-checkpoint dependencies, we introduce and 
validate a novel methodology called OncoTreat.

Assembling and characterizing a GEP-NET cohort. To identify 
master regulator proteins responsible for implementing and main-
taining the transcriptional state of GEP-NETs, we assembled a col-
lection of 212 high-quality, fresh-frozen GEP-NET samples, either 
from surgical resections or biopsies. All samples were reviewed 
by a board-certified pathologist. A minimum tumor cellularity 
of 70% was required, ensuring that RNA-sequencing (RNA-Seq) 
profiles were representative of tumor compartment cells. Only 
2.3% of the evaluated tumors were excluded due to low cellular-
ity, thus preventing further exploration of an interesting subset of 
stroma-rich GEP-NETs (see Methods for additional quality con-
trol metrics). Due to the rare nature of these tumors, this required 
the coordinated efforts of an 18-institution International NET 
Consortium (iNET; Supplementary Table 1). The resulting collec-
tion includes both primary and metastatic samples representing 
P-NET (83 and 30, respectively), SI-NET (44 and 37, respectively) 
and RE-NET (3 and 15, respectively) subtypes that had transcrip-
tomes profiled by RNA-Seq (Supplementary Table 2, Methods). 
Due to the distributed nature of the iNET consortium, clinical 
sample annotation was sparse, further supporting the unbiased 
analysis of these samples at the molecular level. Reproducibility of 
gene expression profiles between similar samples was comparable 
to the average of 33 tumor cohorts in The Cancer Genome Atlas 
(Supplementary Fig. 1a).

Assembling a GEP-NET-specific regulatory model. Master reg-
ulator inference depends on the availability of accurate, tumor- 
specific regulatory models (interactomes), representing both direct 

transcription factor/co-factor targets as well as the least-indirect 
targets of signaling proteins20. Both can be systematically identified 
by analyzing large, tumor-specific gene expression profile data sets 
using the algorithm for the accurate reconstruction of cellular net-
works (ARACNe)26,27, as supported by extensive experimental vali-
dation studies12,13,19,28. Alternative reverse engineering algorithms, 
such as CLR or CellNet29,30, producing high-accuracy transcrip-
tional interaction maps may also be used and could be explored in 
follow-up studies.

Analysis of 212 GEP-NET RNA-Seq profiles yielded an inter-
actome comprising 571,499 transcriptional interactions between 
5,631 proteins—including 1,785 transcriptional regulators and 
3,846 signaling proteins (Methods)—and 20,136 target genes. 
Benchmark tests confirmed the GEP-NET interactome optimal-
ity to analyze GEP-NET samples and its distinct nature from 25 
tumor-specific models previously generated and validated by our 
laboratory (Supplementary Table 3 and Supplementary Fig. 1b). 
Moreover, using all GEP-NET samples for interactome genera-
tion, rather than subtype-specific samples, maximized prediction 
quality, as measured by overall regulon enrichment in GEP-NET  
metastatic progression signatures (Supplementary Fig. 1b). In 
addition, regulons from the resulting pan-GEP-NET interactome 
were highly conserved with those of subtype-specific interactomes 
(at a false discovery rate (FDR) <  0.05)13, including for metastases 
(99% conservation), primary tumors (98.9%), P-NETs (97.2%) and 
SI-NETs (94.5%) (Supplementary Fig. 1c,d).

GEP-NET molecular subtypes. Unsupervised analysis of GEP-
NET transcriptional profiles highlighted a strong tissue-of-origin 
contribution. Specifically, on the basis of principal component 
analysis, the first five components accounted for 33% of the total 
sample variance and clustered with primary tumor site, regardless 
of whether samples were derived from primaries, lymph nodes or 
metastases (Supplementary Fig. 2a). This observation was further 
confirmed based on a t-distributed stochastic neighbor embedding 
(t-SNE) projection of GEP-NET transcriptomes in two dimensions 
(Supplementary Fig. 2b). Consistently, partitioning around medoids 
(PAM)-based consensus clustering, followed by cluster reliabil-
ity analysis (Methods), suggested optimal sample partitioning 
into four distinct clusters (E1–E4) that mostly co-segregated with 
primary tumor site (Fig. 1a and Supplementary Fig. 2d). Clusters  
E1–E3 were highly enriched in SI-NET, P-NET and RE-NET  
samples, respectively. Only cluster E4 was mixed, including samples 
from SI-NETs and P-NETs.

VIPER-inferred protein activity represents a more reproducible 
biomarker than gene expression20: first, protein activity represents 
a more mechanistic cell state determinant because it reflects causal 
regulation of tumor signature genes; second, activity of each pro-
tein is inferred from expression of tens to hundreds of transcrip-
tional targets, thus averaging out measurement noise and improving 
reproducibility20; third, bias and technical noise that are inconsis-
tent with the regulatory model are effectively eliminated. We thus 
used VIPER to transform 212 GEP-NET transcriptional profiles 
into protein-activity profiles, representing sample-specific activ-
ity of 5,578 proteins20. As expected8, protein activity significantly 
outperformed gene expression-based clustering (P <  10−15, by one-
sided paired U-test comparison of single-sample cluster reliability 
scores, Supplementary Fig. 2d–i).

Unsupervised PAM-based consensus cluster analysis and t-SNE 
analysis of VIPER-inferred protein activity identified five clusters 
(A1–A5) representing molecularly distinct GEP-NET subtypes 
(Fig. 1b and Supplementary Fig. 2c). These included a SI-NET-
specific cluster (A1, yellow), a P-NET specific cluster (A3, blue), a 
RE-NET cluster (A4, red) and two heterogeneous clusters including 
mainly P-NET and SI-NET samples (A2, green; A5: purple; Fig. 1b  
and Supplementary Fig. 2c). We used a matched color scheme 
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to represent cluster membership in the t-SNE projection, which 
showed essentially an equivalent cluster structure identified by 
both unsupervised analyses (adjusted Rand index =  0.88, P <  10−80 
by permutation test, Fig. 1b and Supplementary Fig. 2c). Moreover, 
on the basis of expression of established markers, P-NETs were bet-
ter divided across three distinct clusters, consistent with potential 
cell of origin, including gastrinoma and insulinoma (green), gluca-
gonoma (blue) and non-secretory P-NETs (purple) (Fig. 1). These 

results confirm strong tissue-lineage-specific (epigenetic) memory, 
independent of tumor stage.

Elucidating master regulators of metastatic GEP-NET state. The 
normal tissue counterpart of GEP-NET malignancies is the subject 
of significant debate31. In addition, before metastatic progression, 
these tumors have favorable prognosis25. Thus, rather than seek-
ing master regulators controlling transformation from normal to 
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Fig. 1 | GEP-NET molecular subtypes and master regulators for metastatic progression. a, Unsupervised cluster analysis of 212 GEP-NET samples based 
on their gene expression profile. The heatmap shows the Pearson’s correlation coefficient. Samples were partitioned in four clusters and sorted according 
to their silhouette score (gray bars on the right of the heatmap). Each cluster average silhouette score is indicated by numbers. The tissue of origin is 
indicated in the top horizontal bar: rectum (red), small intestine (green) and pancreas (blue). The expression level (reads per kilobase of transcript per 
million mapped reads) for gastrin, glucagon, insulin, somatostatin and vasoactive intestinal polypeptide (VIP) is indicated by the bottom heatmap, as 
well as their association with the clusters (two-tailed P!values estimated by ANOVA are shown on the right of the heatmap). b, Unsupervised cluster 
analysis based on the VIPER-inferred protein activity for 5,578 regulatory proteins. The heatmap shows the scaled similarity score computed by gene set 
enrichment analysis, using the aREA algorithm (Methods). c, Heatmap showing conservation of the top 50 most dysregulated proteins in association with 
liver metastasis between each possible sample pair. Clusters corresponding to panel b are indicated with a color-matching scheme in the second color bar. 
d, Heatmap showing relative protein activity for the top 20 most dysregulated proteins from each of the four clusters shown in panel c. The color bars on 
the right indicate the tissue of origin and correspondence to the five clusters depicted in panel b. The single-sample silhouette score and its cluster average 
are indicated to the right of the plot. MR, master regulator.
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tumor-related NET-cell state, we focused on master regulators rep-
resenting mechanistic determinants of progression from primary 
to metastatic disease, similar to ref. 21. To elucidate these candidate 
dependencies, we performed VIPER analysis of gene expression 
signatures representing transitions between primary tumors and 
hepatic metastases (MET-GES)—representing 69 of the 82 meta-
static samples—using the GEP-NET interactome.

To address the potential heterogeneity of tumor progression 
mechanisms and to support use of this framework in precision 
oncology, each hepatic metastasis was analyzed on an individual 
basis (Supplementary Table 2). Ideally, each metastasis would be 
compared to its patient-matched primary21. However, since patient-
matched samples were not available for this rare malignancy,  
MET-GES signatures were generated by differential expression anal-
ysis (z-score based) of each hepatic metastasis in an activity-based 
cluster (A1–A5) against the average of all primary samples in that 
cluster (Fig. 1b). Three primary samples were discarded, including 
a P-NET and two SI-NETs, since they could not be reliably clus-
tered (one-tailed cluster reliability FDR >  0.01). Candidate master 
regulators were then inferred by VIPER analysis of these signatures, 
using the GEP-NET interactome. Comparing metastases to clus-
ter-matched primaries effectively discounts lineage determinants, 
which would otherwise represent confounding factors leading to 
contamination of metastatic progression master regulators with  
lineage master regulators.

Inferred master regulators were surprisingly conserved across 
patients, both inter and intra cluster, suggesting a common meta-
static progression mechanism. Indeed, the 25 most statistically sig-
nificant positive and negative VIPER-inferred master regulators of 
each sample were highly enriched in proteins that were differen-
tially active in most other metastatic samples, with 1,416 of 2,346 
possible metastatic sample pairs showing statistically significant 
master regulator overlap (FDR <  0.01, by enrichment analysis,  
Fig. 1c and Supplementary Fig. 3a). Consensus clustering identified 
four clusters (M1–M4) representing distinct metastatic progression 
mechanisms (Fig. 1c), as well as several master regulators shared 
by most metastatic samples, such as the developmental proteins 
GDF2, CUX2 and BMP10 (Fig. 1d). A comprehensive heatmap rep-
resenting the most conserved master regulators across all clusters is  
provided in Supplementary Table 4a–e.

Not surprisingly, since progression signatures were based on 
cluster-matched metastatic and primary samples, there was minimal 
association between the five GEP-NET subtype clusters (A1–A5) and 
the four metastatic progression clusters (M1–M4), with A1 and A4 
samples preferentially clustering in M5 (SI-NET enriched) and M1 
(RE-NET enriched), respectively. This confirms an effective control 
of lineage-related confounding factors and suggests that GEP-NETs 
may share common metastatic progression mechanisms, largely 
decoupled from primary tumor site and subtype identity.

Validation of master regulators by shRNA silencing. Effective 
validation of candidate master regulators requires cell lines or 
mouse models that most closely recapitulate their VIPER-inferred 
activity15. We thus considered 921 cell lines comprising the Cancer 
Cell Line Encyclopedia32, as well as two GEP-NET-derived cell 
lines (H-STS33 and KRJ-I34), both isolated from SI-NET patients. 
For each cell line, a putative metastatic progression signature 
was generated by differential expression with the profile of a 
primary GEP-NET-derived cell line (P-STS33). Cells were scored 
on the basis of the consistency of their gene expression profiles 
with the patient-derived GEP-NET interactome (Supplementary 
Fig. 4a) and on the enrichment of their differentially active 
proteins in master regulators of metastatic GEP-NET samples  
(Fig. 2, Supplementary Fig. 4 and Supplementary Note). H-STS 
and KRJ-1—the 4th (top 0.43%) and 6th (top 0.65%) best matched 
models out of 923 available ones, respectively (Supplementary  

Fig. 4c,d)—were selected, given their GEP-NET origin and pro-
pensity to implant in xenograft models.

We then proceeded to validate master regulators that were  
aberrantly active both across metastatic patients and in H-STS cells. 
We found 55 candidate master regulators showing significant differ-
ential activity (P <  10-4 by enrichment analysis, Bonferroni corrected, 
using the aREA algorithm20, Supplementary Fig. 3c). Of these, the top 
34 most significant ones (P <  2.0 ×  10-7, Bonferroni corrected) were 
prioritized for experimental validation (Supplementary Table 5).  
Surprisingly, despite a very high tumor purity, several prioritized 
master regulators were immune cell markers. We thus confirmed 
their expression in H-STS cells by FACS analysis (Fig. 3 and 
Supplementary Note), suggesting that they were not identified as 
part of tumor immune infiltrate.

To assess whether master regulator proteins identified by our 
analysis represent critical tumor dependencies, we measured H-STS 
cell viability following their lentivirus-mediated shRNA silencing. 
Of 34 master regulators selected for validation, 16 could be repro-
ducibly silenced (≥ 40%, based on quantitative PCR with reverse 
transcription (qRT–PCR)), by at least two independent shRNA 
hairpins (Supplementary Fig. 3d). Of these, 15 (94%) significantly 
reduced H-STS growth/viability in vitro (≥ 20%, one-tailed P <  0.01, 
by analysis of variance (ANOVA); Fig. 4), confirming their role as 
relevant tumor dependencies. These results were recapitulated in 
KRJ-I cells but not in the negative control cell line (NCI-H716) 
(Supplementary Figs. 3e and 6f). These results support the more 
universal (mutation-independent) nature of patient-specific master 
regulator dependencies discovered by this approach.

Validated master regulators include early neuroendocrine  
lineage factors (IKZF1, IKZF3, SPI-1, GFI-1 and POU2F2), EMT 
drivers (Notch2, EOMES and GATA3) and immunomodula-
tory factors (CD45 also known as PTPRC, IL2RB1, CD53, CD86, 
RUNX3, CIITA and IL10). Taken together, the concerted activity of 
these proteins recapitulates key hallmarks of aggressive neuroendo-
crine tumors and provides a compelling mechanistic portrait of the 
programs that are necessary to maintain GEP-NET cell state (Fig. 4c 
and Supplementary Note).

Inference of master regulator activity inhibitors. To identify 
small-molecule compounds that could invert the activity of meta-
static GEP-NET master regulators, we profiled a library of 504 com-
pounds. These had been previously analyzed at the Broad Institute 
(Cambridge, MA, USA) for differential activity against a panel of 
242 genomically characterized cancer cell lines and results for a 
subset of 354 of them had been previously published7. All 504 com-
pounds were re-screened in available GEP-NET, patient-derived 
cells lines, including H-STS, P-STS and KRJ-I, and in NCI-H716 as 
a negative control. This led to the selection of 107 compounds—102 
of which were commercially available—that were differentially 
active in GEP-NET-related cells, as measured by the area under the 
dose–response curve (AUC). Dose–response curves generated by 
the high-throughput screening facility at Columbia University and 
by the Broad Institute were compared. Overall, these data presented 
high reproducibility, with AUC-based Spearman correlation of 0.71. 
An additional five compounds were identified by literature analysis 
as direct master regulator inhibitor—including bafetinib, crizotinib, 
PHA-665752, SU11274 and Y-27632—for a total of 107 compounds 
(Supplementary Table 6).

To assess the ability of these compounds to induce tumor-check-
point collapse (that is, global reversion of patient-specific master 
regulators), we generated gene expression profiles of H-STS cells at 
24 h following perturbation with each compound at two sublethal 
concentrations, the 72 h effective dose 20 (ED20) and one-tenth of 
that concentration and with control media (DMSO), in duplicate. 
Profiles were obtained by 30M SE read Illumina TruSeq sequenc-
ing of purified RNA from treated cells. This allows testing of the  
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highest non-toxic compound concentration, thus focusing the analy-
sis on compound mechanism of action (MoA) rather than on mech-
anisms of cell stress/death. We reasoned that, while in vivo endpoint 
phenotypes (tumor viability) are not effectively recapitulated in 
two-dimensional culture conditions, compound MoA is reasonably 
well recapitulated in both contexts and is most frequently assessed 
in vitro. We thus aimed to identify compounds capable of invert-
ing master regulator signature activity in a closely related in vitro  
model of the patient-specific tumor, to prioritize compounds with 
potential in vivo activity.

Drug response signatures were generated by differential expres-
sion analysis of H-STS cells treated with each compound versus 
control media and further analyzed by VIPER to assess compound-
mediated changes in protein activity. This prioritized all 5,602 regu-
latory proteins represented in the GEP-NET interactome, from the 
most inhibited to the most activated by each treatment, thus allow-
ing identification of compounds capable of inducing highly statisti-
cally significant reversal of the master regulator-activity signature 
in each sample (tumor-checkpoint collapse). For each sample, this 
was accomplished by assessing the enrichment of its top 50 posi-
tive and 50 negative master regulators of metastatic progression in  
proteins that were inactivated and activated by each compound 
treatment, respectively.

To ensure optimal fidelity of the analysis, we first focused on  
32 samples whose master regulators were significantly recapitulated 
in H-STS xenografts (one-tailed P <  10−10, Bonferroni corrected, 
aREA analysis; Fig. 2a). Moreover, only sample-specific master  
regulator proteins that were recapitulated in the H-STS cell line, based 
on leading-edge analysis (Fig. 2b), were included in the analysis. 
Finally, Stouffer’s method was used to integrate the statistical signifi-
cance of results across different drug concentrations and replicates. 
Results for all drugs predicted to induce tumor-checkpoint collapse 
in at least ten patients are shown in Fig. 5a. Complete results for all 
69 metastatic GEP-NET samples are also reported (Supplementary 
Fig. 5), albeit relying on fewer conserved master regulators between 
the patient sample and the H-STS xenograft model.

As an example, consider the patient with the most statistically 
significant master regulator match to H-STS cells (patient 0). Six 
compounds were predicted to induce tumor-checkpoint collapse 
(Bonferroni’s adjusted P <  10−10, one-tailed aREA), including the 
class I (HDAC1/3) inhibitor entinostat, the bromodomain inhibitor 
I-BET151, the Nrf2-pathway-activator/NF-κ B inhibitor bardoxo-
lone methyl, the c-Met inhibitor PHA-665752, the CDK1, 2, 4 and 6 
inhibitor flavopiridol and the NMPRTase inhibitor FK866. Among 
all tested compounds, entinostat and I-BET151 were predicted to 
induce highly significant tumor-checkpoint collapse in 47% and 
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Fig. 3 | Cell surface marker master regulators on H-STS cells and effect of entinostat on their expression. a, Flow cytometry detection of cell surface 
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44% of metastatic samples (N =  15 and N =  14 of 32, respectively), 
the most of any tested compound, as well as in the H-STS xeno-
graft (Fig. 5a and Supplementary Fig. 5). They were thus selected for  
further validation in vivo.

mTOR inhibitors and sunitinib have shown some clinical value 
in the treatment of GEP-NETs. Consistently, our analysis identi-
fied several mTOR/AKT/PI(3)K inhibitors, such as everolimus, 
AZD8055 and MK2206, among others, as strong tumor-check-
point inhibitors (P <  10−10, Bonferroni corrected, one-tailed aREA) 
for about 15% of GEP-NETs and as marginal inhibitors (P <  10−5, 
Bonferroni corrected) for an additional 10%–15% of the cohort. 
Similarly, sunitinib was identified as a strong and marginal tumor-
checkpoint inhibitor for 8% and 11% of the cohort, respectively 
(Fig. 5a and Supplementary Fig. 5).

Interestingly, entinostat modulated presentation of the cell 
surface markers identified as master regulators (Fig. 3c and 
Supplementary Note).

Drug validation in vivo. We selected three compounds for vali-
dation in an H-STS xenograft model, including: entinostat, the 
drug with the strongest tumor-checkpoint collapse potential in the  

largest subset of GEP-NET samples, as well as in the H-STS  
xenograft (− log10P =  82 and − log10P =  99, respectively); tivantinib, 
a c-Met and microtubule inhibitor with strong activity reversal in 
28% of metastatic samples (N =  9 of 32) and intermediate master 
regulator-activity reversal in the H-STS xenograft (− log10P =  8); 
and PDX101/belinostat, a pan-HDAC inhibitor selected as a nega-
tive control because of its complete lack of master regulator-activity 
reversal potential in the H-STS xenograft but with a MoA similar to 
entinostat (Figs. 5b and 6c).

In vivo testing of drugs in NOD-SCID xenografts established 
by subcutaneous injection of H-STS cells was first conducted 
at Champions Oncology. Confirming our predictions, tumors 
treated with belinostat showed minimal tumor growth inhibition 
(TGI) (8% TGI at the 20 mg kg−1 dose−1 level). In contrast, entino-
stat showed high efficacy, with tumor regression (TR) of 68% and 
TGI of 112% at 25 mg kg−1 dose−1, and TR of 58% and TGI of 110% 
at 50 mg kg−1 dose−1, respectively. While treatment with entinostat 
was toxic at the highest dose (100 mg kg−1), the single surviving 
animal from that group showed TR of 49%. Finally, also consistent 
with predictions of partial master regulator-activity reversal in the 
xenograft model (Fig. 5c), mild TGI of 43% (200 mg kg−1 dose−1) 
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and TGI of 28% (100 mg kg−1 dose−1) were observed with tivan-
tinib (Table 1 and Fig. 5d). The results for entinostat were inde-
pendently confirmed in the mouse hospital facility at Columbia 
University (Fig. 5e).

We then tested two additional drugs at the maximum toler-
ated dose. These included the I-BET151 bromodomain inhibitor 

also predicted to induce tumor-checkpoint collapse in ~44% of 
metastatic patients and in the H-STS model, and bardoxolone 
methyl, an oxidative-stress-activator/NF-κ B inhibitor predicted 
to induce significant tumor-checkpoint collapse in patient 0  
(− log10P =  28) but not in the H-STS model. Weak TGI was 
observed for bardoxolone methyl, only at the last time point 
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(18 d), and no significant difference was observed for I-BET151, 
when both were compared to vehicle control (Fig. 5e). Lack of 
response was expected for bardoxolone, because it was not pre-
dicted to induce reversal of H-STS xenograft-specific master regu-
lators and thus represented a bona fide negative control for the 
analysis. However, lack of response for I-BET151 was unexpected, 
as its predicted inversion of the xenograft’s master regulators was 
also very strong (− log10P =  51, Fig. 5c).

To assess whether the I-BET151 failure was due to differences in 
compound MoA in vitro and in vivo, we performed short-term phar-
macodynamics measurements by profiling xenograft-derived tumors 
by RNA-Seq at 3 h after the third drug administration for all three 
tested drugs (Methods). In agreement with compound perturbations 
in vitro (Fig. 5c), VIPER-based analysis of these profiles confirmed 
significant inhibition of HSTS xenograft master regulator-activity by 
entinostat but not by bardoxolone (Fig. 5f), suggesting that VIPER-
inferred compound MoA in vitro was effectively recapitulated in 
vivo for these compounds. However, the analysis also showed that, 
contrary to in vitro predictions, I-BET151 did not induce significant 
master regulator-activity reversal in the xenograft (Fig. 5f).

Thus, while bardoxolone may be an effective drug for some 
patients (for example, patient 0), its activity could not be effectively 
tested in the xenograft model due to master regulator differences.  
In contrast, I-BET151 presented significant difference between its in 
vitro and in vivo MoA, likely due to compound pharmacokinetics,  
metabolism, maximum tolerated dose or OncoTreat false-positive 
results. This suggests that top drugs prioritized by OncoTreat should 
always be validated in vivo, to assess MoA conservation. This can be 
done efficiently, since the number of promising drugs emerging from 
the analysis of a large cohort is relatively small, thus allowing efficient 
prioritization of drugs for follow-up clinical studies.

Discussion
Master regulator proteins represent a novel class of tumor depen-
dencies and potential therapeutic targets that are highly enriched 
both in tumor-essential genes10,16 and synthetic-lethal pairs11–13. 
Their genetic or pharmacological inhibition induces activity rever-
sion of the entire master regulator-protein repertoire, previously 
described as tumor-checkpoint collapse8. This provides a poten-
tial strategy (OncoTreat) for the prioritization of drugs to target  
tumor checkpoints.

We tested this approach in a rare class of tumors (GEP-NETs) 
that lack actionable mutations and remain poorly characterized35–37. 
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Table 1 | Tumor volume and agent activity data

Group %TGI RECIST PD/SD/PR/CRa %TR

Control 3/0/0/0 n/a
ARQ197 200!mg 43% 3/0/0/0 n/a
ARQ197 100!mg 28% 3/0/0/0 n/a
ARQ197 50!mg − 46% 3/0/0/0 n/a
PDX101 20!mg 8% 3/0/0/0 n/a
PDX101 40!mg − 55% 3/0/0/0 n/a
MS-27-275 25!mg 112% 0/0/3/0 68
MS-27-275 50!mg 110% 0/0/3/0 58

MS-27-275 100!mgb n/a 0/0/1/0 49
aPD, progressive disease; SD, stable disease; PR partial response; CR, complete response. 
bFour of five animals died one week into the test, likely as a result of drug toxicity; results are 
representative of the single surviving animal.
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This choice was deliberate, to show applicability of the proposed 
methodology even to rare tumors or to tumors with few, if any, 
actionable mutations, a significant unmet challenge in precision 
oncology. Following evaluation of 107 drugs, we confirmed thera-
peutic potential in vivo for entinostat, a drug predicted to induce 
tumor-checkpoint collapse in 15 of 32 (47%) metastatic GEP-NET 
samples for which a suitable pre-clinical model was available, as well 
as 13 of 35 (37%) metastatic GEP-NET samples lacking a suitable 
pre-clinical model (Supplementary Fig. 5). Almost all of the pre-
dicted responders (28/67), accounting for 42% of metastatic GEP-
NET patients in the cohort, were from cluster M1 or M2 (Fig. 5a). 
Additional drugs were identified for patients presenting alternative 
master regulator dependencies (Supplementary Fig. 5), includ-
ing inhibitors of the PI(3)K/AKT/mTOR pathway (everolimus, 
AZD8055, MK2206), some of which have shown some efficacy in 
clinical trials. Most of these belonged to cluster M3. However, lack 
of appropriate preclinical models prevented a more extensive valida-
tion of inferred drugs. Indeed, validation of two drugs predicted to 
induce patient-specific master regulator collapse was inconclusive 
due to differences in either patient- and xenograft-specific master 
regulator dependencies targeted by the drug or in vitro and in vivo 
MoA. For further discussion, see the Supplementary Note.

The top six compounds prioritized by the analysis induced sig-
nificant in vitro activity reversal of almost all patient-related master 
regulators, as further confirmed in vivo for entinostat. Since it is 
implausible that these compounds may represent specific inhibi-
tors and agonists of each of these proteins, this confirms that master 
regulator proteins are organized into tightly autoregulated on/off 
modules (tumor checkpoints) that can be globally inactivated even 
by a single compound. Furthermore, induction of the established 
neuroendocrine marker CD56 by the top prioritized drug (entino-
stat) supports the hypothesis that tumor checkpoints represent key 
tumor state determinants and that their collapse may induce differ-
entiation or reprogramming.

Clearly, a number of open challenges remain. For instance,  
in vitro screening may lead to identification of compounds with 
different in vivo pharmacodynamics, such as I-BET151, or those 
that effectively reverse master regulator activity but only in concen-
trations that are too high to be tolerated. This may be effectively 
addressed by studying compound pharmacodynamics in vivo, as 
shown. Finally, the proposed methodology may miss drugs induc-
ing non-master regulator-mediated tumor toxicity. In contrast, the 
OncoTreat methodology is generalizable and can be applicable to 
any tumor for which a regulatory model and a perturbational data-
base can be assembled, including in basket studies with drugs prior-
itized on the basis of their complementary coverage of a rare tumor 
cohort (Fig. 5a and Supplementary Fig. 5).

The general logic of OncoTreat to be applied in the clinical set-
ting is summarized in Fig. 6. On the basis of the high reproduc-
ibility of drugs prioritized by OncoTreat—a direct result of VIPER’s 
demonstrated reproducibility20—the test has been certified by the 
NYS CLIA laboratory and is immediately available at the Columbia 
University Laboratory of Personalized Genomic Medicine (see the 
URLs section). Furthermore, on the basis of the results of this study, 
the FDA approved the Investigational New Drug Application for 
entinostat in GEP-NETs, thus allowing further clinical validation 
of these results in a recently initiated clinical trial (NCT03211988).

URLs. Columbia University Laboratory of Personalized Genomic 
Medicine: https://www.pathology.columbia.edu/departments-
divisions/division-personalized-genomic-medicine. The ARACNe 
algorithm is available from Columbia University Systems Biology 
Department: http://califano.c2b2.columbia.edu/software/. The 
VIPER and aREA algorithms are part of the `viper’ R-system’s 
package available from Bioconductor: https://www.bioconductor.
org/packages/release/bioc/html/viper.html. The neuroendocrine  

context-specific regulatory network model is available from Figshare: 
https://doi.org/10.6084/m9.figshare.6007232.

Methods
Methods, including statements of data availability and any asso-
ciated accession codes and references, are available at https://doi.
org/10.1038/s41588-018-0138-4.
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Methods
Materials. Lentiviral MISSION shRNAs as pre-made virus particles were ordered 
from Sigma-Aldrich (MISSION shRNAs), along with pre-made primers for each 
gene. Virus was aliquoted and stored at − 80 °C. The Pepfect 14 reagent used for 
transduction has been described before38. The following control virus stocks 
were used from Sigma-Aldrich MISSION, with catalog number: TurboGFP 
expression construct SHC003V; non-mammalian non-target shRNAs SHC002V 
and SHC202V; shRNAs targeting TurboGFP SHC004V, eGFP SHC005V and 
Luciferase SHC007V. For qRT–PCR, Power SYBR Green Master Mix was from 
ThermoScientific.

Cells. Neuroendocrine tumor-derived H-STS cells33 and KRJ-1 cells  
(kindly provided by Dr. R. Pfragner) were grown in 1:1 mix of M199/Ham’s F-12 
containing 10% FBS and antibiotics (penicillin 100 IU ml−1 and streptomycin  
100 µ g ml−1). NCI-H716 cells (ATCC CCL-251) were grown in RPMI-1640 
containing 10% FBS and antibiotics (penicillin 100 IU ml−1 and streptomycin 
100 µ g ml−1). Cells were tested negative for mycoplasma contamination and not 
used beyond passage 30. For all transduction experiments using serum-free 
growth medium without antibiotics, a plain 1:1 mix of M199/Ham’s F-12 was used 
(referred to as plain medium).

GEP-NET expression profile. A total of 931 NET-related, fresh-frozen (FF) 
samples were collected by the 18 centers in the International NET Consortium  
(see Supplementary Table 1). All of the samples were received in de-identified form 
under an IRB exemption (AAAJ2011). Samples were individually evaluated for 
correct diagnosis, cellularity and necrotic fraction by a dedicated, board-certified, 
NET pathologist, leading to identification of 212 GEP-NET samples with cellularity 
> 70% and RNA integrity number (RIN) > 7. Of the 931 collected samples, 205 
represented normal tissue (0% cellularity) and 299 samples were classified as 
adenocarcinoma by a board-certified pathologist. Of the remaining 427 samples, 
only 10 (2.3%) were discarded due to cellularity < 70%. RNA isolated from 130 
of the remaining 417 samples did not meet the minimum RNA integrity quality 
(RIN >  7). Of the remaining 287 samples, 224 were further selected on the basis of 
a known tissue of origin, either pancreas, small intestine or rectum. Finally, only 
1 representative sample from 13 that were obtained from the same patient was 
included in the collection, resulting in 212 high-quality NET samples. Of these, 
113 represented fresh-frozen biopsies of primary and metastatic tumors originating 
from pancreas (P-NET), 81 from small intestine (SI-NET) and 18 from rectum 
(RE-NET). Primary site characterization was confirmed by a board-certified 
pathologist (L.H.T., Supplementary Table 2). Expression profiles were obtained for 
all of the samples by RNA-Seq. Briefly, total RNA was isolated and RNA integrity 
was assayed by a 2100 Bioanalyzer (Agilent Technologies). High-quality total RNA 
samples, with RIN above 7, were processed by the Columbia Genome Center. 
For each sample, a minimum of 30 million 100-base-pair single-end reads were 
sequenced on the Illumina HiSeq2500 platform. RNA-Seq reads were mapped to 
the Homo sapiens assembly 19 reference genome, using Bowtie39. Reads mapping 
to known genes, based on Entrez gene identifiers, were then counted using the 
GenomicFeatures R-system package (Bioconductor40). Summarized expression 
data resulting from these analyses are available from the Gene Expression Omnibus 
database (GSE98894). Expression data were then normalized by equi-variance 
transformation, based on the negative binomial distribution with the DESeq 
R-system package (Bioconductor).

GEP-NET regulatory network. The regulatory network was reverse engineered  
by ARACNe27 from 212 GEP-NET expression profiles. ARACNe was run with  
100 bootstrap iterations using a set of 1,813 transcription factors (genes annotated 
in the Gene Ontology Molecular Function database (GO)41 as GO:0003700—
‘DNA binding transcription factor activity’, or as GO:0003677—‘DNA binding’ 
and GO:0030528—‘Transcription regulator activity’, or as GO:0003677 and 
GO:0045449—‘Regulation of transcription’), 969 transcriptional co-factors  
(a manually curated list, not overlapping with the transcription factor list, built upon 
genes annotated as GO:0003712—‘transcription cofactor activity’ or GO:0030528 
or GO:0045449) or 3,370 signaling-pathway-related genes (annotated in the GO 
Biological Process database as GO:0007165—‘signal transduction’ and in the GO 
Cellular Component database as GO:0005622—‘intracellular’ or GO:0005886—‘plasma 
membrane’) as candidate regulators. Parameters were set to 0 DPI (Data Processing 
Inequality) tolerance and MI (Mutual Information) P value threshold of 10−8.

Unsupervised data analysis. Unsupervised cluster analysis based on gene 
expression for 212 GEP-NET samples was performed as follows. Unsupervised 
gene expression signatures were computed by a z-score transformation of the 
variance-stabilized data. This was performed gene-by-gene, by first subtracting 
the mean expression level across all samples and then dividing by its standard 
deviation. Then, the similarity between samples was computed by Pearson’s 
correlation. Samples were partitioned in k clusters by the PAM algorithm42. The 
optimal number of clusters was determined by maximizing cluster reliability. 
Briefly, the cluster reliability score for each sample i in cluster p was computed 
as the enrichment of the similarity scores between sample i and samples j such 
as j belongs to cluster p, on the vector of distances between i and all other 

analyzed samples. Cluster reliability for sample i was expressed as the normalized 
enrichment score (NES) computed by the aREA algorithm20. The reliability 
score for each cluster p was computed by the area over the cumulative curve 
(AOC) based on the samples classified in each cluster p, after scaling the sample 
reliability scores between 0 and 1. The global reliability for the cluster structure 
was computed by the AOC using all samples (Supplementary Fig. 2e,f). The 
optimal number of clusters was determined as the first local maxima for the global 
reliability score (Supplementary Fig. 2d).

Unsupervised cluster analysis for 212 GEP-NET samples based on relative 
protein activity was performed as follows. Unsupervised gene expression 
signatures were computed by z-score transformation of the expression data 
matrix. Relative protein activity was then inferred for each individual sample with 
the VIPER algorithm20. Briefly, VIPER uses the relative expression level for the 
direct and indirect transcriptional targets of each regulatory protein (regulon), 
as a multiplexed reporter of its activity. Using the GEP-NET regulatory network, 
VIPER transformed the matrix of relative gene expression into a 5,578 regulatory 
proteins ×  212 GEP-NET samples protein activity matrix. The similarity between 
samples based on protein activity was computed with the viperSimilarity function, 
available from the VIPER package (Bioconductor), using default parameters. 
Unsupervised clustering was performed using PAM and the optimal number of 
clusters was determined as previously described, based on the first local maxima 
for the global reliability score (Supplementary Fig. 2d).

t-SNE analysis was performed with the tsne package for R (Bioconductor), 
using a perplexity value of 40, 5,000 iterations and using the first two principal 
components as the initial configuration. Unsupervised cluster analysis of the data 
projected in two dimensions by t-SNE was performed by PAM, using the Euclidean 
distance of the two-dimensional projected space. Cluster similarity was computed 
by adjusted Rand index, as implemented in the mclust package for R. Rand 
index statistical significance was estimated by permuting the cluster assignment 
uniformly at random 10,000 times.

Master regulators of metastatic progression. Master regulators of metastatic 
progression were inferred for each liver-MET sample. GEP-NET samples were 
assigned to one of five clusters by PAM analysis of the unsupervised protein 
activity signatures. Single-sample gene expression signatures were computed 
for each MET sample by subtracting the mean of the cluster-matching primary 
samples and dividing by their standard deviation. Master regulators were then 
inferred by VIPER analysis of each individual MET gene expression signature.

Master regulator-based matching of tumors, cell lines and xenograft models. 
Cell lines and xenograft models were prioritized on the basis of the enrichment 
of the top 100 master regulators of each metastasis (top 50 most activated and top 
50 most inactivated regulatory proteins) on each cell line and xenograft protein 
activity signature. Cell line and xenograft protein activity signatures were obtained 
by first computing a gene expression signature by comparing each cell line versus 
the P-STS cell line, and each xenograft sample versus the set of primary samples 
associated with cluster 5 (Supplementary Fig. 2j). Then, the associated protein 
activity signatures were inferred by the VIPER algorithm. Enrichment of the top/
bottom 50 most differentially active regulatory protein in each metastasis, on each 
model protein activity signature, was computed by the aREA algorithm20. P values 
were estimated by the analytical approximation method implemented by the aREA 
algorithm, and were shown to be equivalent to estimates obtained by permutation-
based methods20. P values were corrected to account for multiple hypothesis testing 
by the Bonferroni method.

Generation of drug perturbation data sets. The drug-perturbation data set was 
generated as follows. First, the ED20 for each drug in H-STS cells was estimated by 
performing 10-point dose–response curves in triplicate, using total ATP content as 
read-out. Briefly, 2,000 cells per well were plated in 384-well plates. Small-molecule 
compounds were added with a 96-well pin-tool head 12 h after cell plating. Viable 
cells were quantified 48 h later by ATP assay (CellTiterGlo, Promega). Relative cell 
viability was computed using matched DMSO control wells as reference. ED20 was 
estimated by fitting a four-parameter sigmoid model to the titration results.

H-STS cells, plated in 384-well plates, were then perturbed with a library of 
107 small-molecule compounds at their corresponding ED20 concentration and 
one-tenth of it. Cells were lysed at 6 h and 24 h after small-molecule compound 
perturbation and total RNA was isolated. RNA integrity was assayed by a 2100 
Bioanalyzer (Agilent Technologies). High-quality total RNA samples, with RIN >  9, 
were processed by the Columbia Genome Center. We used a more rigorous RNA 
integrity condition for H-STS cells (RIN >  9) than for tumor tissue-derived RNA 
(RIN >  7) because suboptimal-quality samples from cell-line-based experiments 
can be easily repeated while only a limited amount of material is available from the 
tumor tissue samples. For each sample, a minimum of 30 million 100-base-pair 
single-end reads were sequenced on the Illumina HiSeq2500 platform. RNA-Seq 
reads were mapped to the Homo sapiens assembly 19 reference genome, using 
Bowtie39. Reads mapping to known genes, based on Entrez gene identifiers, were 
then counted using the GenomicFeatures R-system package (Bioconductor40). 
Summarized expression data resulting from these analyses are available from 
the Gene Expression Omnibus database (GSE96760). Expression data were then 
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normalized by equi-variance transformation, based on the negative binomial 
distribution with the DESeq R-system package (Bioconductor). At least two 
replicates for each condition were obtained. Differential gene expression signatures 
were computed by comparing each condition with plate-matched vehicle control 
samples using a moderated Student’s t-test as implemented in the limma package 
from Bioconductor43. Individual gene expression signatures were then transformed 
into protein activity signatures, based on the GEP-NET regulatory network, using 
the VIPER algorithm20, as implemented in the viper package from Bioconductor.

OncoTreat analysis. Optimal alignment of drugs with tumors was obtained by 
analyzing the effect of the drugs on the tumor master regulators. For this, drugs 
were prioritized for each liver-MET sample on the basis of their ability to invert their 
master regulator program. Briefly, protein activity signatures after drug perturbation 
were obtained by first comparing the expression profile after each perturbation 
versus a set of vehicle control samples, including DMSO, ethanol and methanol 
treatments. Then, protein activity signatures in response to drug perturbation were 
inferred with the VIPER algorithm. Finally, the enrichment of the top/bottom  
50 most differentially active proteins of each tumor on each drug-induced protein 
activity signature was computed by the aREA algorithm20. P values were estimated by 
the analytical approximation implemented in the aREA algorithm, which have been 
shown to be practically equivalent to estimations obtained by permutation of the 
proteins in the signature uniformly at random20. P values were corrected to account 
for multiple hypothesis testing by the Bonferroni method.

Transduction of H-STS with lentiviral shRNAs for qRT–PCR. For qRT–PCR 
assays, cells were transduced with the Pepfect 14 reagent as follows. Pepfect 14 was 
dissolved in water to a 1 mM stock and stored at − 80 °C. Transduction conditions 
including cell number and Pepfect 14 concentration were optimized with a control 
TurboGFP Lentiviral construct from Sigma-Aldrich (MISSION SHC003V) using 
flow cytometry and fluorescence microscopy.

Pepfect 14 in water was added to a final concentration of 30 µ M to 10 µ l of virus 
in 50 µ l total volume of serum-free medium, mixed immediately, and incubated 
at room temperature for 1 h to allow complex formation. H-STS cells were plated 
at 50,000 cells per well of a 24-well plate in 500 µ l of serum-free growth medium 
without antibiotics, and 50 µ l of the virus complex was added to cells and mixed by 
swirling (multiplicity of infection ~1:100). Cells were incubated at 37 °C for 1.5 h, 
and then 60 µ l of FBS was added. Cells were incubated for another 24 h at 37 °C 
before being harvested for qRT–PCR.

qRT–PCR assays. For qRT–PCR, cells were pelleted, washed with ice-cold PBS 
(without Mg2+/Ca2+) and lysed with Cells-to-cDNA II Lysis Buffer (ThermoFisher 
Scientific). Following DNAse treatment (Cells-to-cDNA II kit) of cell lysates 
and inactivation of DNAse, total RNA was subjected to cDNA synthesis using 
qScript cDNA Synthesis Kit (Quanta Biosciences) followed by qPCR using Power 
SYBR Green Master Mix (ThermoScientific), according to the manufacturer’s 
instructions following optimization.

Long-term viability assays following shRNA transduction and puromycin 
selection. Optimal starting cell numbers for these assays were determined by 
a growth curve, and the optimal number of days (three days) to allow efficient 
puromycin expression was determined by a time course over seven days. H-STS, 
KRJ-1 or NCI-H716 cells at 50,000 cells in 500 µ l plain medium per well in 24-well 
plates were treated with 10 µ l of appropriate shRNA lentivirus alone and incubated 
at 37 °C for 1 h. Then 60 µ l of plain FBS was added and incubation was continued  
for 3 days. At this time, cells were recovered and re-plated at 50,000 cells per 
well in 500 µ l of fresh complete growth medium containing puromycin to a final 
concentration of 0.8 µ g ml−1 for H-STS and KRJ-1 cells (and 1.0 µ g ml−1 for NCI-
H716). Control lentiviral shRNAs were SHC202V and SHC007V. After three more 
days of growth with puromycin, cells were resuspended and an equal aliquot of 
cells from each well was used to determine cell viability using the Cell-Titer-Glo 
ATP Assay (Promega). Viability was expressed as a percentage of the average of all 
controls, setting the value from untransfected puromycin-treated cells as the baseline.

Flow cytometry. One million cells in 100 µ l of complete growth medium were 
stained with the following antibodies by incubation on ice for 30 min: CD19–FITC 
(clone H1b19, eBioscience); CD45–PerCp–Cy5.5 (clone H130, BD Pharmingen); 
CD53–FITC (clone: REA259, Miltenyi Biotec); CD56–FITC (clone: REA196, 
Miltenyi Biotec); CD80–FITC (clone 2D10.4, eBioscience); CD86–AlexaFluor647 
(clone IT2.2, BioLegend); CD122 (also known as IL2RB)–FITC (clone REA167, 
Miltenyi Biotec); and appropriately labeled isotype antibodies as controls.  
A complete list of antibodies and validation data is provided in Supplementary 
Table 7. Cells were washed once with PBS containing 0.1% BSA and 5 mM EDTA, 
resuspended in the wash buffer and analyzed. The gating strategy is described in 
Supplementary Fig. 6.

Agent efficacy evaluation. All experiments using animals were performed 
according to protocols approved by the Institutional Animal Care and Use 
Committee (IACUC) at Columbia University Medical Center. NOD.Cg-Prkdcscid 
Il2rgtm1Wjl/SzJ mice 8 weeks of age or older were inoculated subcutaneously with 
106 H-STS cells in 200 µ l of 25% LDEV-free Matrigel in PBS. All test agents were 

formulated according to the manufacturer’s specifications. Beginning at day 
0, tumor dimensions were measured twice weekly by digital caliper and data, 
including individual and mean estimated tumor volumes (mean TV ±  s.e.m.), 
were recorded for each group. Tumor volume was calculated using the formula: 
TV =  width ×  length ×  π /2j.

Tumor growth inhibition and RECIST. At study completion, percentage of TGI 
(%TGI) values were calculated and reported for each treatment group (T) versus 
the control (C) using initial (i) and final (f) tumor measurements by the formula: 
%TGI =  [1 −  (Tf −  Ti)/(Cf −  Ci)] ×  100. Individual mice reporting a tumor volume 
> 120% of the day 0 measurement are considered to have progressive disease. 
Individual mice with neither sufficient shrinkage nor sufficient tumor volume 
increases are considered to have stable disease. Individual mice reporting a tumor 
volume ≤ 70% of the day 0 measurement for two consecutive measurements over 
a seven-day period are considered partial responders. If the partial response 
persisted until study completion, percentage TR (%TR) is determined using 
the formula: %TR =  (1 −  Tf /Ti) ×  100; a mean value is calculated for the entire 
treatment group. Individual mice lacking palpable tumors for two consecutive 
measurements over a seven-day period are classified as complete responders.  
All data collected in this study were managed electronically and stored on a 
redundant server system.

Drug pharmacodynamics evaluation by expression profile analysis. 
Subcutaneous tumors were resected at 3 h after the third application of the drug 
and snap-frozen in N2. Total RNA was isolated as described previously and 
profiled by 30M-SE RNA-Seq. Gene expression signatures in response to drug 
perturbation in vivo were computed by comparison against gene expression 
profiles obtained from xenografts growing subcutaneously in matched untreated 
animals. The corresponding protein activity signatures were inferred with the 
VIPER algorithm20, using the GEP-NET regulatory network model. The effect of 
the compounds on the MET master regulator program in vivo was evaluated by 
computing the enrichment of the top/bottom 50 most differentially active proteins 
in the tumors, on the drug-induced protein activity signature obtained from  
in vivo perturbation experiments. Enrichment analysis was performed with the  
aREA algorithm20.

Statistical analysis. Enrichment analysis, including model matching based on 
master regulator conservation and OncoTreat analysis, was computed by the aREA 
algorithm and statistical significance was estimated by the analytical approximation 
implemented in the algorithm20. Cluster reliability scores as well as their statistical 
significance were estimated by the aREA algorithm, and compared by one-sided 
paired U-test. Statistical significance for adjusted Rand index was estimated by 
permutation test. Statistical significance for the association of gastrin, glucagon, 
insulin, somatostatin and vasoactive intestinal polypeptide expression with the  
E and A clusters was estimated by ANOVA. Significance values for differential gene 
expression after shRNA-mediated knockdown and cell viability were estimated 
by two-factor ANOVA using a one-sided test. P values were adjusted to account 
for multiple hypothesis testing by Benjamini–Hochberg FDR or Bonferroni, as 
indicated in the text.

Reporting Summary. Further information on experimental design is available in 
the Nature Research Reporting Summary linked to this article.

Code availability. All of the code used in this work is freely available for research 
purposes. The ARACNe algorithm is available from Columbia University Systems 
Biology Department (see the URLs section). VIPER and aREA algorithms are 
part of the `viper’ R-system’s package available from Bioconductor (see the URLs 
section). The neuroendocrine context-specific regulatory network model is 
available from Figshare (see the URLs section).

Data availability. The gene expression data presented in this manuscript are 
available from the Gene Expression Omnibus database, with accession numbers 
GSE98894 and GSE96760.
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Life Sciences Reporting Summary
Nature Research wishes to improve the reproducibility of the work we publish. This form is published with all life science papers and is intended to 
promote consistency and transparency in reporting. All life sciences submissions use this form; while some list items might not apply to an individual 
manuscript, all fields must be completed for clarity. 

For further information on the points included in this form, see Reporting Life Sciences Research. For further information on Nature Research policies, 
including our data availability policy, see Authors & Referees and the Editorial Policy Checklist. 

`    Experimental design
1.   Sample size

Describe how sample size was determined. Three mice per arm were used for monitoring growth tumor kinetic and 
effect of small molecule compound treatment. The number of mice per 
arm was determined by power analysis to provide a significant difference 
(p < 0.05) in growth rate assuming 50% inhibition of tumor growth rate. 
Experiments were performed according to Institutional guidelines for 
Animal Care and Use (IACUC) Columbia University Medical Center.

2.   Data exclusions
Describe any data exclusions. Only 3 primary NET samples were removed from the analysis of MET-MRs 

because they could not be reliably assigned to any of the clusters (Fig. 1b). 

3.   Replication
Describe whether the experimental findings were reliably reproduced. All attempts for replicating the experiments were sucessful.

4.   Randomization
Describe how samples/organisms/participants were allocated into 
experimental groups.

Animals were randomly allocated in the different experimental arms.

5.   Blinding
Describe whether the investigators were blinded to group allocation 
during data collection and/or analysis.

Investigators collecting tumor size measurements were blind to the 
treatment administered to each experimental arm. All the data analysis 
was performed by systematic computational pipelines.

Note: all studies involving animals and/or human research participants must disclose whether blinding and randomization were used.

6.   Statistical parameters 
For all figures and tables that use statistical methods, confirm that the following items are present in relevant figure legends (or the Methods 
section if additional space is needed). 

n/a Confirmed

The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement (animals, litters, cultures, etc.)

A description of how samples were collected, noting whether measurements were taken from distinct samples or whether the same sample 
was measured repeatedly. 

A statement indicating how many times each experiment was replicated

The statistical test(s) used and whether they are one- or two-sided (note: only common tests should be described solely by name; more 
complex techniques should be described in the Methods section)

A description of any assumptions or corrections, such as an adjustment for multiple comparisons

The test results (e.g. p values) given as exact values whenever possible and with confidence intervals noted

A summary of the descriptive statistics, including central tendency (e.g. median, mean) and variation (e.g. standard deviation, interquartile range)

Clearly defined error bars

See the web collection on statistics for biologists for further resources and guidance.
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`   Software
Policy information about availability of computer code

7. Software
Describe the software used to analyze the data in this study. R-system v3.3.3 (www.r-project.org) 

ARACNe-AP (http://califano.c2b2.columbia.edu/aracne) 
VIPER v1.10 (https://www.bioconductor.org/packages/release/bioc/html/
viper.html) 
aracne.networks v1.3.1 (https://www.bioconductor.org/packages/devel/
data/experiment/html/aracne.networks.html) 
Bowtie v1.1.2 (http://bowtie-bio.sourceforge.net/index.shtml) 
GenomicFeatures v1.28 (http://bioconductor.org/packages/release/bioc/
html/GenomicFeatures.html)

For all studies, we encourage code deposition in a community repository (e.g. GitHub). Authors must make computer code available to editors and reviewers upon 
request.  The Nature Methods guidance for providing algorithms and software for publication may be useful for any submission.

`   Materials and reagents
Policy information about availability of materials

8.   Materials availability
Indicate whether there are restrictions on availability of unique 
materials or if these materials are only available for distribution by a 
for-profit company.

Pepfect reagent was provided in collaboration by Dr. Ulo Langel.  Dr. 
Langel is an author on the paper, and the reagent request should be 
addressed to him.  All other reagents are commercial or non-unique.  Non-
commercial reagents will be made available upon request.

9.   Antibodies
Describe the antibodies used and how they were validated for use in 
the system under study (i.e. assay and species).

The antibodies are described in Supplementary Table 6

10. Eukaryotic cell lines
a.  State the source of each eukaryotic cell line used. H-STS, KRJ-1 and P-STS cell lines have been described before in the 

literature and referenced in the manuscript, and were made available by 
Dr. Mark Kidd, co-author of this manuscript. NCI-H716 cells were obtained 
from ATCC.

b.  Describe the method of cell line authentication used. Authentication and characterization was performed in a previous work.  
Pfragner, R. et al. Establishment and characterization of three novel cell 
lines - P-STS, L-STS, H-STS - derived from a human metastatic midgut 
carcinoid. Anticancer Res 29, 1951-1961 (2009). We did not re-
authenticate the cell lines for this work, but validate their value as models 
for GEP-NET as shown in Supplementary Fig. 4.

c.  Report whether the cell lines were tested for mycoplasma 
contamination.

No mycoplasma detected in cell lines H-STS, P-STS, KRJ-1 or NCI used for 
the experiments.

d.  If any of the cell lines used in the paper are listed in the database 
of commonly misidentified cell lines maintained by ICLAC, 
provide a scientific rationale for their use.

The cell lines used for this work are not listed in the ICLAC database.

`    Animals and human research participants
Policy information about studies involving animals; when reporting animal research, follow the ARRIVE guidelines

11. Description of research animals
Provide details on animals and/or animal-derived materials used in 
the study.

Mus musculus, NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ, both sexes, >8 weeks of 
age, mean weight of 26g.

Policy information about studies involving human research participants

12. Description of human research participants
Describe the covariate-relevant population characteristics of the 
human research participants.

Given the limited availability of GEP-NET samples, no clinical covariates 
were used and all samples satisfying the quality conditions defined in the 
Online Methods section were included for the study.
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